

PHYLOGENETIC ANALYSIS OF BEAN YELLOW MOSAIC VIRUS ISOLATES FROM GLADIOLI IN UKRAINE

Bean yellow mosaic virus (BYMV) is the one of most prevalent and harmful viruses infecting gladiolus plants worldwide. The aim of the study was to perform phylogenetic analysis of two Ukrainian BYMV isolates from gladioli grown in different regions of Ukraine and determine phylogenetic relationships of the isolates to other BYMVs. Visual diagnostics, enzyme-linked immunosorbent assay in DAS-ELISA modification, total RNA extraction, RT-PCR, phylogenetic analysis and statistical data analysis were used in this research. The results of the studies showed that gladioli of variety 'Pamyat' (Poltava region, 2018) and var. 'Galyna Zelenobirska' (Kyiv region, 2020) with symptoms of chlorotic stripes and mosaics on the leaves, flower color breaks are infected by BYMV. Fragments of the CP gene sequence of Ukrainian gladiolus isolates of bean yellow mosaic virus, named GIMP-18 (MK416160) and BYMV-GI-SV-20 (MZ286966) were sequenced and deposited to the NCBI GenBank. Nucleotide sequences of these isolates corresponding to 578 nt of the coat protein gene (CP) located at the position 8727–9305 of the viral genome and amino acid sequences were compared with 40 known BYMV isolates/strains. Phylogenetic analysis demonstrated that GIMP-18 and BYMV-GI-SV-20 have identity of nucleotide sequence 100 % and amino acid sequence 100 % with each other. Both Ukrainian isolates clustered with the Monocot group. The identity of the CP gene sequences of the two gladiolus isolates GIMP-18 and BYMV-GI-SV-20 from geographically remote regions of the country and in different years of selection indicates a common origin of isolates and probable their distribution of planting material.

Keywords: gladiolus, bean yellow mosaic virus, phylogenetic analysis.

Introduction. Bean yellow mosaic virus (BYMV) is the one of the most widespread and harmful virus that infects gladiolus worldwide. BYMV belongs to the *Potyvirus* genus of *Potyviridae* family and can infect more than 200 plant species from 14 families. Infection with BYMV and CMV was reported to cause (i) reduction of the number of corms and cormels; (ii) shorter life of the stock; (iii) lower number of florets per spike; and (iv) deterioration of the flowers quality [1, 2].

There are two main classifications of BYMV isolates. One divides all isolates into seven phylogenetic groups (general, monocot, lupine, canna, W, pea, broad bean) according to the coat protein sequences [3]. Second divides all isolated into nine phylogenetic groups (I-IX) based on full genome sequences [4]. Within the host-specific groups of the first classification, all isolates originate from the domesticated species, and none were identified in the wild plants. On the contrary, isolates in the general group were identified in wild and domesticated hosts of monocots and dicots [3]. Some members of the monocot group can infect dicotyledonous species from three families: *Orchidaceae*, *Iridaceae*, *Gentianaceae* [5–9]. As phylogenetic relationships among BYMV isolates correlate with their natural hosts, Wylie et al. (2008) proposed seven BYMV phylogenetic groupings based on coat protein sequences and the original hosts of the isolates: (i) general group with a broad host range of monocots and dicots; (ii) broad bean group; (iii) canna group; (iv) lupine group; (v) monocot group; (vi) pea group; and (vii) one strain 'W' from *L. albus* [3]. An isolate PAC-1 from *Passiflora caerulea* did not cluster with any of seven host groups [10]. Interestingly, all gladiolus isolates fall into two different groups: monocot and general. Isolates belonging to the monocot group are of Europe and Asia origin from four hosts, which are all domesticated ornamental plants within two monocot (*Orchidaceae*, *Iridaceae*) and one dicot (*Gentianaceae*) family. All these host species are propagated vegetatively. International trade in infected corms of *G. hybrida* would explain such a wide geographic distribution of the BYMV isolates from the monocot group.

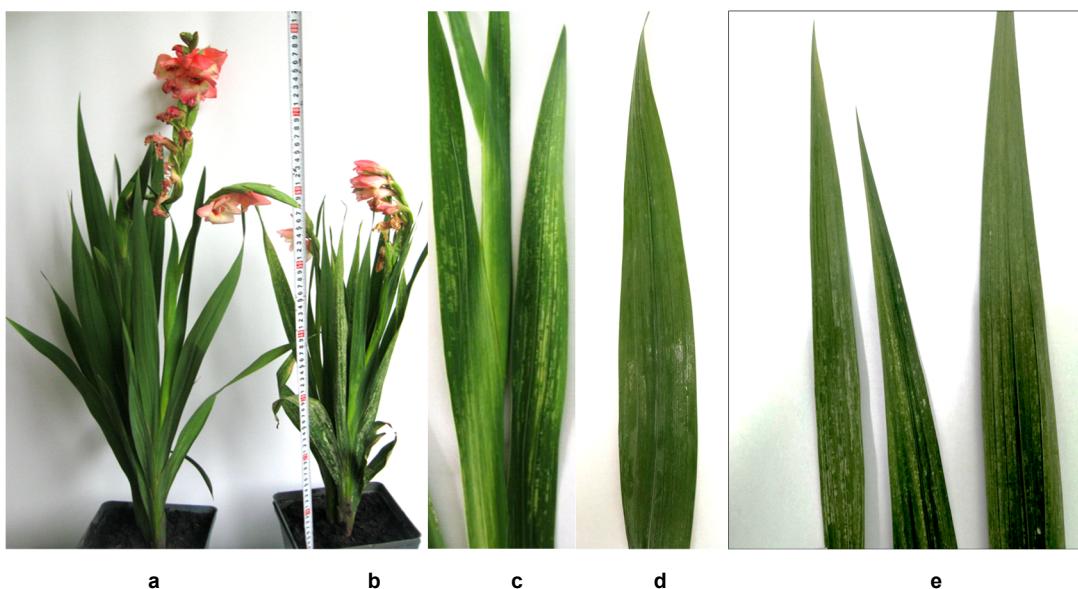
The aim of the study was to perform a phylogenetic analysis of two BYMV isolates from gladioli grown in different

regions of Ukraine and determine phylogenetic relationships of the isolates to other BYMVs.

Materials and methods. *Samples collection and visual diagnostics.* Sampling was carried out in the summer-autumn period in 2018 and 2020 in the territories of Poltava region and Kyiv region. Visual diagnostics revealed symptoms of viral infection on leaves, flowers and corms. Samples of gladiolus with both virus-specific symptoms and visually healthy plants were selected.

Enzyme-linked immunosorbent assay. To determine the presence of viral antigens, the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was used. The analysis was performed using commercial antibodies against BYMV manufactured by Loewe (Germany) in three replicates. Samples of healthy gladioli were used as negative controls. Commercial BYMV preparations (Loewe, Germany) were used for positive controls. The reaction results were recorded on the Termo Labsystems Optris MR (USA) reader with Dynex Revelation Quicklink software at wavelength of 405 nm. Samples with absorbance values that exceeded the negative control at least three times were considered positive [11].

RNA extraction, RT-PCR and sequencing. GeneJET Plant RNA Purification Mini Kit (Thermo Scientific, USA) was used to extract total RNA from gladiolus leaves. Samples of healthy gladioli were used as negative control. cDNA synthesis was performed using RevertAid Reverse Transcriptase (Thermo Scientific, USA) and BYMV-specific oligonucleotide primers for amplifying a fragment of BYMV coat protein gene were used: BYMV-CP-5, 5'-GAAGTGTGGAAC-GTTTCAATTCC-3'; and BYMV-CP-3, 5'-TCTGTTCCAA CATTGCCATCAAG-3' [12]. Amplification steps using Dream Taq Green PCR Master Mix (Thermo Scientific, USA) were performed using a Genetic Research Instrumentation LTD thermocycler (UK). The amplification reactions were set up as follows: initial denaturation for 3 min at 95 °C, followed by 30 cycles of 95 °C for 30 s, 62 °C for 30 s and 72 °C for 45 s. The final extension was at 72 °C for 5 min. The primers are expected to amplify DNA product sections of the BYMV capsid protein gene of 590 bp. PCR products were separated on a 1.5 % agarose gel with DNA markers


CSL-MDNA-100 bp (Cleaver Scientific, UK), and visualized under UV light. The PCR products were purified from the agarose gel using Zymoclean Gel DNA Recovery Kit (Zymo Research, USA). Sanger dideoxy direct sequencing was performed on the 3130 Genetic analyzer (Applied Biosystems-HITACHI) using the BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems) and primers used for cDNA synthesis and amplification. Sample analysis was performed using Sequencing Analysis Software v5.2.0.

Phylogenetic analysis. The obtained sequences of the *CP* gene of two Ukrainian BYMV isolates from gladioli were compared with the sequences available in the NCBI GenBank database using the BLAST program. Forty BYMV isolates from different countries were used for the analysis. Nucleotide and amino acid sequences were aligned using

Clustal W. Phylogenetic trees for the 578 nt fragment of *CP* gene of BYMV isolates were constructed in MEGA X by the Neighbor Joining method [13] using the Jukes–Cantor model with 1000 bootstrap replicates to estimate the statistical significance of each node. Clover yellow vein virus (Ac No NC_003536) was taken as an outgroup for the tree [14]. The pairwise nucleotide sequence identity scores between isolates were determined using MEGA X.

Results and discussion

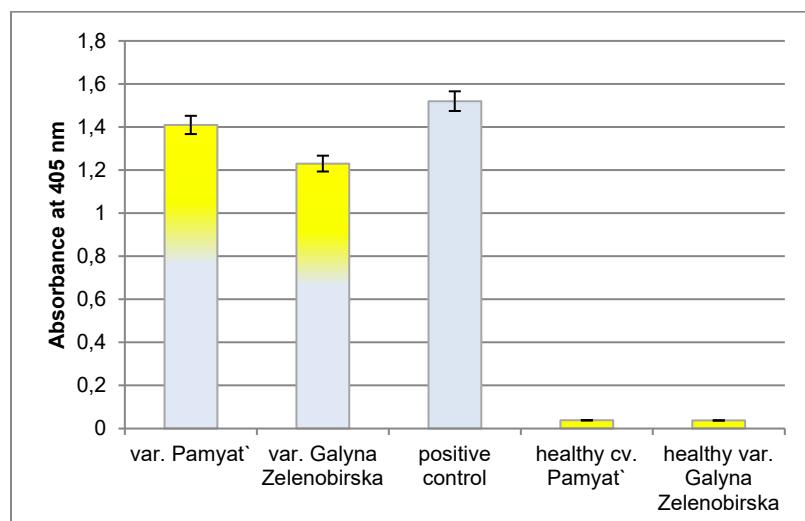

During the summer–autumn period of 2018 and 2020, samples of gladioli variety Pamyat' and var. Galyna Zelenobirska were collected in Poltava and Kyiv region, respectively. Virus-specific symptoms of chlorotic stripes and mosaics on the leaves, colour breaks on the flowers were observed (Fig. 1).

Fig. 1. Symptoms of BYMV infection on gladiolus plants: a) – healthy, var. Pamyat'; b, c – chlorotic stripes var. Pamyat'; d – healthy var. Galyna Zelenobirska; e – chlorotic mosaics and stripes, var. Galyna Zelenobirska

DAS-ELISA showed the presence of BYMV antigens in gladioli with described symptoms (Fig. 2). In asymptomatic gladiolus samples BYMV antigens were not detected. The

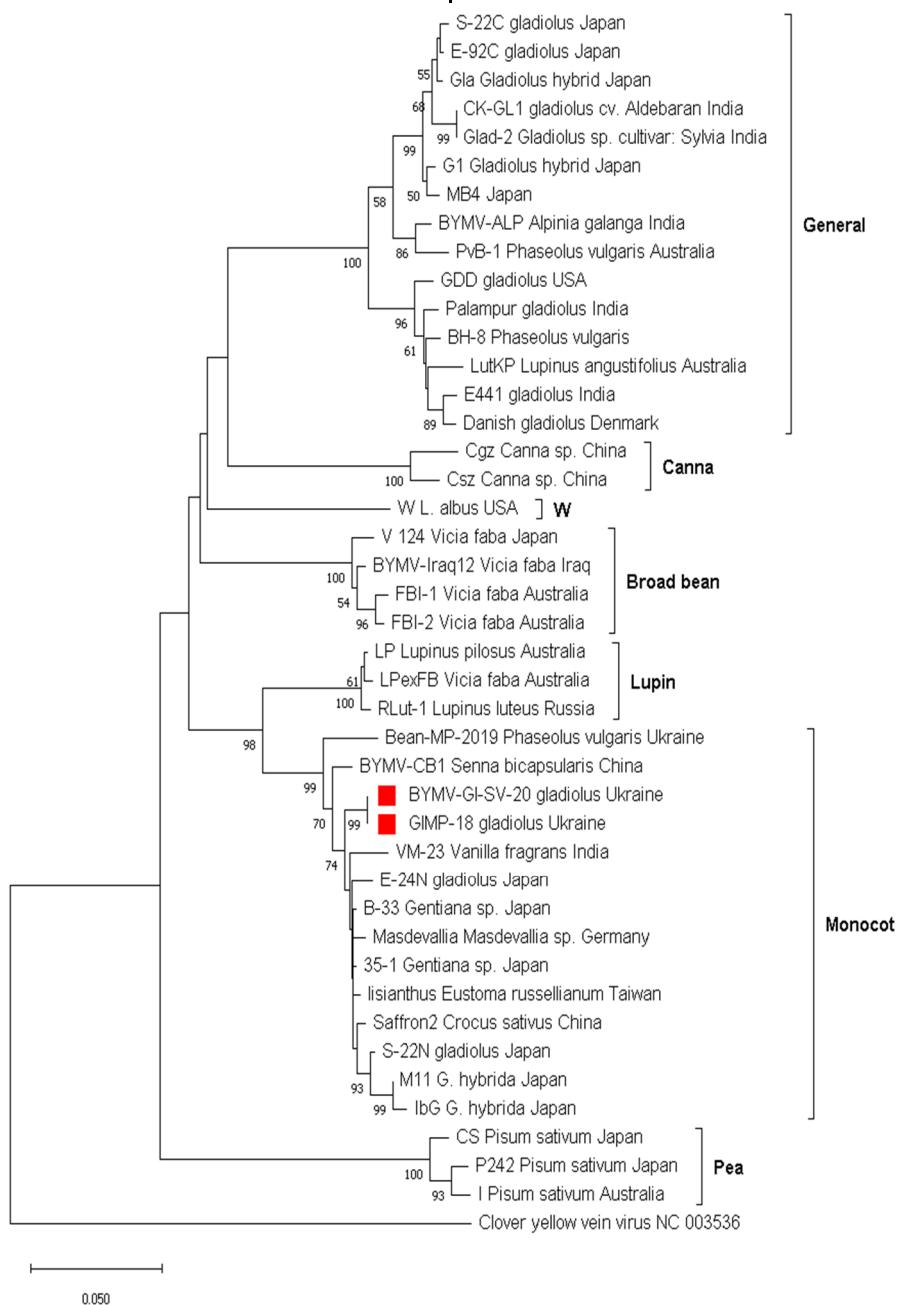

results of RT-PCR are consistent with the data obtained by DAS-ELISA and demonstrate the presence of BYMV in the studied samples of gladiolus leaves.

Fig. 2. Detection of BYMV in gladioli leaves by DAS-ELISA

Fragments of the *CP* gene sequence of Ukrainian gladiolus isolates of bean yellow mosaic virus, named GIMP-18 (MK416160) and BYMV-GI-SV-20 (MZ286966) were sequenced and deposited to the NCBI GenBank. Nucleotide sequences of these isolates corresponding to 578 nt of the coat protein gene (*CP*) located at the position 8727–9305 of the viral genome were compared with 40 known BYMV isolates/strains.

This experiment demonstrated that GIMP-18 and BYMV-GI-SV-20 are very similar to each other with the identity of nucleotide sequence 100 % and amino acid sequence 100 %. Both Ukrainian isolates clustered with the Monocot group (Fig. 3) and shared 96.6–99.4 % nucleotide sequence and 95.9–100 % amino acid identity with the members of this clade (Table 1).

Fig. 3. Neighbor-joining tree based on nucleotide sequences of 578 nt *CP* gene fragment of BYMV isolates. Jukes-Cantor model was performed. The scale bar shows the number of substitutions per base.
Clover yellow vein virus (Ac No NC_003536) used as an outgroup.
The studied Ukrainian gladioli isolates are marked with red squares

Phylogenetic analysis of GIMP-18 and BYMV-GI-SV-20 showed the highest percentage of identity with Japanese isolates from *Gentiana* sp. 35-1 (AB097090), B-33 (AB097089), which is 98.6–99.4 % by nucleotide sequence and 98.5–100 % by amino acid sequence, as well as with Taiwanese isolate Lisanthus from *Eustoma russellianum*

(AM884180), Chinese isolate Saffron-2 from *Crocus sativus* (MG002647) – 98.2 % nt and 100 % aa; German isolate Masdevallia from *Masdevallia* sp. (AF185961), Japanese gladiolus isolate E-24N (AB029438) – 98.2 % nt and 99.5 % aa sequences, respectively (Table 1).

Comparative analysis of identity with other BYMV groups showed that isolates GIMP-18 and BYMV-GI-SV-20 have an identity in the range of 92 % – 92.7 % nt, 98.9 % – 99.5 % aa with the Lupin group; with isolates from the Broad bean group – 85.5 % – 85.8 % nt, 97.9 % – 98.9 % aa; with

General – 82.3 % – 83.6 % nt, 93.7 % – 96.3 % aa; with the Canna group 83.0 % – 83.6 % nt, 94.3 % – 94.8 % aa; with a representative from group W – 85.5 % nt, 95.3 % aa and with representatives of Pea group share identity of 80.1 % – 81.2 % nt and 92.2 % – 92.7 % aa (Table 1).

Table 1. Nucleotide and amino acid sequence identity of the coat protein gene fragments of the Ukrainian BYMV isolates with isolates from the GenBank (%)

No	Ac No в GenBank	Isolate	Host	Country	Group	GIMP-18 (MK416160)		BYMV-GI-SV-20 (MZ286966)		References
						nt	aa	nt	aa	
1	AB097090	35-1	<i>Gentiana sp.</i>	Japan	Monocot	99.4	100	99.4	100	[7]
2	AB097089	B-33	<i>Gentiana sp.</i>	Japan	Monocot	98.6	98.5	98.6	98.5	[7]
3	AM884180	Lisianthus	<i>Eustoma russellianum</i>	Taiwan	Monocot	98.4	98.5	98.4	98.5	[9]
4	MG002647	Saffron2	<i>Crocus sativus</i>	China	Monocot	98.2	100	98.2	100	[15]
5	AF185961	Masdevallia	<i>Masdevallia sp.</i>	Germany	Monocot	98.2	99.5	98.2	99.5	[8]
6	AB029438	E-24N	gladiolus	Japan	Monocot	98.2	99.5	98.2	99.5	[8]
7	AB029435	S-22N	gladiolus	Japan	Monocot	97.9	99.5	97.9	99.5	GenBank
8	MK516282	BYMV-CB1	<i>Senna bicapsularis</i>	China	Monocot	97.9	100	97.9	100	[16]
9	OL555723	Bean-MP-2019	<i>Phaseolus vulgaris</i>	Ukraine	Monocot	95.9	98.4	95.9	98.4	GenBank
10	AY845012	VM-23	<i>Vanilla fragrans</i>	India	Monocot	97.5	96.9	97.5	96.9	GenBank
11	AB079886	M11	<i>G. hybrida</i>	Japan	Monocot	97.2	98.6	97.2	98.9	GenBank
12	AB079887	IbG	<i>G. hybrida</i>	Japan	Monocot	96.6	97.9	96.6	97.9	[7]
13	HG970866	BYMV-LP	<i>Lupinus pilosus</i>	Australia	Lupin	92.1	99.5	92.1	99.54	[3]
14	EU082124	R-Lut-1	<i>Lupinus luteus</i>	Russia	Lupin	92.7	99.5	92.7	99.5	[3]
15	HG970868	LPexFB	<i>Vicia faba</i>	Australia	Lupin	92.0	98.9	92.0	98.9	[3]
16	JQ026005	BYMV-Iraq12	<i>Vicia faba</i>	Iraq	Broad bean	85.7	98.9	85.7	98.9	[9]
17	AB041970	V 124	<i>Vicia faba</i>	Japan	Broad bean	85.8	98.4	85.8	98.4	GenBank
18	EU082116	FBI-1	<i>Vicia faba</i>	Australia	Broad bean	85.5	97.9	85.5	97.9	[17]
19	EU082114	FBI-2	<i>Vicia faba</i>	Australia	Broad bean	85.5	98.4	85.5	98.4	[17]
20	AY192568	GDD	<i>Gladiolus sp.</i>	USA	General	83.6	95.8	83.6	95.8	[18]
21	AB439729	Gla	<i>G. hybrida</i>	Japan	General	83.6	95.8	83.6	95.8	[19]
22	AB439730	G1	<i>G. hybrida</i>	Japan	General	83.6	96.3	83.6	96.3	[19]
23	AB029436	S-22C	<i>Gladiolus sp.</i>	Japan	General	83.4	94.8	83.4	94.8	[9]
24	AB029439	E-92C	<i>Gladiolus sp.</i>	Japan	General	83.4	95.8	83.4	95.8	[9]
25	KF155409	CK-GL1	<i>Gladiolus</i>	India	General	83.0	95.3	83.0	95.3	[6]
26	JQ686721	Glad 2	<i>Gladiolus</i>	India	General	83.6	95.3	83.6	95.3	[6]
27	AM398198	Palampur	<i>Gladiolus</i>	India	General	83.4	95.3	83.4	95.3	GenBank
28	AB041972	BH-8	<i>Phaseolus vulgaris</i>	Japan	General	83.2	94.8	83.2	94.8	GenBank
29	EU082123	PvB-1	<i>Phaseolus vulgaris</i>	Australia	General	82.7	95.8	82.7	95.8	[20]
30	AF192781	LutKP-1	<i>Lupinus luteus</i>	Australia	General	82.5	94.3	82.5	94.3	[3]
31	D83749	MB4	-	Japan	General	83.6	95.8	83.6	95.8	[21]
32	MN509831	BYMV-ALP	<i>Alpinia galanga</i>	India	General	83.4	96.3	83.4	96.3	[17]
33	AJ844916	E441	<i>Gladiolus</i>	India	General	82.3	93.7	82.3	93.7	[22]
34	X53684	Danish	<i>Gladiolus hybrida</i>	Denmark	General	82.3	94.3	82.3	94.3	[20]
35	EF592169	Csz	<i>Canna sp.</i>	China	Canna	83.6	94.3	83.6	94.3	GenBank
36	EF592168	Cgz	<i>Canna sp.</i>	China	Canna	83.0	94.8	83.0	94.8	GenBank
37	DQ641248	W	<i>L. albus</i>	USA	W	85.5	95.3	85.5	95.3	[23]
38	AB373203	CS	<i>Pisum sativum</i>	Japan	Pea	81.2	92.7	81.2	92.7	GenBank
39	S71232	I	<i>Pisum sativum</i>	Australia	Pea	80.2	92.2	80.2	92.2	[24]
40	AB041971	P242	<i>Pisum sativum</i>	Japan	Pea	80.1	92.7	80.1	92.7	[25]

So, both Ukrainian BYMV isolates cluster with isolates from the Monocot group and have the highest level of the amino acid and nucleotide sequences identity with isolates from *Gentiana* plants (AB097090) and *Crocus sativus* plants (MG002647). This fact is consisted with the hypothesis that *Gentiana* plants could be infected from *Gladiolus* plants growing nearby [3, 8, 9]. Possibly, the 'monocot' group might have coevolved with the domestication of the host species *Iris* or *Crocus*, the ancestors of which are indigenous to Eurasia and are now widely grown as ornamental plants worldwide' [3].

Ukrainian BYMV isolate AI38 from *Phaseolus vulgaris* (KT923791) and isolate AN from soybeans (KT923790) exhibit the highest nucleotide sequence identity with Russian and Australian isolates from lupine plants, and Argentinean isolate from soybean [26]. Hence both belong to the lupine group. These facts confirm previously shown high host-

specificity of the BYMV isolates and suggest that GIMP-17 and GIMP-18 isolates were introduced into the Ukraine from other geographical regions.

Conclusions. Identity of CP gene sequences of GIMP-18 and Bean-MP-2019 (isolate from bean plants, Poltava region) is only 95.9 % nt and 98.4 % aa and these isolates are located distantly on the phylogenetic tree that indicates about their possible different origin. GIMP-18 isolates in 2018 from gladiolus 'Pamyat' in Poltava region shares 100 % nt and aa CP identity with BYMV-GI-SV-20 from var. Galyna Zelenobirska, Kyiv region 2020. Identity of two gladioli BYMV isolates GIMP-18 i BYMV-GI-SV-20 from geographically remote regions of the country and in different years of selection indicates a possible common origin of the isolates and probable their distribution of planting material.

References

- Kaur C., Kumar S., Raj S. K., Chauhan P. S., Sharma N. Characterization of a new isolate of *Bean yellow mosaic virus* Group-IV associated with mosaic disease of Gladiolus in India. *Plant Pathology & Microbiology*. 2015; 6(10):1-8. doi: 10.4172/2157-7471.1000309.
- Sovinska R., Dunich A., Mishchenko L. Co-infection of bean yellow mosaic virus and cucumber mosaic virus in *Gladiolus* sp. plants: phylogenetic analysis of Ukrainian isolates. *Archives of Phytopathology and Plant Protection*. 2022; 55(3): 303-330. doi: 10.1080/03235408.2021.2017189.
- Wylie S. J., Coutts B. A., Jones M. G. K., Jones R. A. C. Phylogenetic analysis of *Bean yellow mosaic virus* isolates from four continents: Relationship between the seven distinct groups found and their natural isolation hosts and geographical origins. *Plant Disease*. 2008; 92(12): 1596-1603. doi: 10.1094/PDIS-92-12-1596.
- Kehoe M. A., Coutts B. A., Buirchell B. J., Jones R. A. Plant virology and next generation sequencing: experiences with a potyvirus. *PloS ONE*. 2014; 9(8): E104580. doi: 10.1371/journal.pone.0104580.
- Gibbs A., Mackenzie A., Blanchfield A., Cross P., Wilson C., Kitajima E., Nightingale M., Clements M. Viruses of orchids in Australia: Their identification, biology and control. *The Australian Orchids Review*. 2000; 65:10-21.
- Kaur C., Raj R., Srivastava A., Kumar S., Raj S. K. Sequence analysis of six full-length bean yellow mosaic virus genomes reveals phylogenetic diversity in India strains, suggesting subdivision of phylogenetic group-IV. *Archives of Virology*. 2018; 163(1): 235-242. doi: 10.1007/s00705-017-3609-5.
- Nakazono-Nagaoka E., Satoh G., Kosaka Y., Natsuaki T. Evaluation of cross-protection with an attenuated isolate of *Bean yellow mosaic virus* by differential detection of virus isolates using RT-PCR. *Journal of General Plant Pathology*. 2004; 70: 359-362. doi: 10.1007/s10327-004-0138-3.
- Uga H., Kobayashi Y.O., Hagiwara K., Honda Y., Omura T. Selection of an attenuated isolate of *Bean yellow mosaic virus* for protection of dwarf gentian plants from viral infection in the field. *Journal of General Plant Pathology*. 2004; 70: 54-60. doi: 10.1007/s10327-003-0091-6.
- Wada Y., Iwai H., Ogawa Y., Arai K. Comparison of pathogenicity and nucleotide sequences of 3'-terminal regions of bean yellow mosaic virus isolates from Gladiolus. *Journal of General Plant Pathology*. 2000; 66(4): 345-352. doi: 10.1007/PL00012976.
- Parrella G., Lanave C. Identification of a new pathotype of *Bean yellow mosaic virus* (BYMV) infecting blue passion flower and some evolutionary characteristics of BYMV. *Archives of Virology*. 2009; 154: 1689-1694. doi: 10.1007/s00705-009-0485-7.
- Crowther J. R. ELISA. Theory and practice. New York: Humana Press; 1995. 223 p. doi: 10.1385/0-89603-279-5:1.
- Wang Y. N., Melzer M. J., Borth W. B., Green J. C., Hamim I., Hu J. S. First report of *Bean yellow mosaic virus* in vanilla in Hawaii. *Plant disease*. 2017; 101(8): 1557. doi: 10.1094/PDIS-01-17-0091-PDN.
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Mol Biol Evol*. 2018; 35(6): 1547-1549. doi: 10.1093/molbev/msy096.
- Naidu R. A., Hu C.-C., Pennington R. E., Ghabrial S. A. Differentiation of eastern and western strains of peanut stunt cucumovirus based on satellite RNA support and nucleotide sequence homology. *Phytopathology*. 1995; 85(4): 502-507. doi: 10.1094/Phyto-85-502.
- Zheng H. Y., Wu X. Y., Han K. L., Chen Z. Q., Song X. J., Peng J. J., Lu Y. W., Lin L., Chen J. P., Yan F., Wu X. Y., Han K. L. First Report of *Beet western yellows virus* infecting *Crocus sativus* in China. *Plant Disease*. 2018; 102(7): 1471. doi: 10.1094/PDIS-10-17-1579-PDN.
- Qiu Y., Zhou Y., Zhang S., Atta S., Li M., Wu J., Li R., Cao M. *Senna bicapsularis*: a new natural host of bean yellow mosaic virus in China. *Plant Disease*. 2019; 103(8): 2144. doi: 10.1094/PDIS-02-19-0428-PDN.
- Cheng Y., Jones R.A.C. Biological properties of necrotic and non-necrotic strains of bean yellow mosaic virus in cool season grain legumes. *Annals of Applied Biology*. 2000; 136: 215-227. doi: 10.1111/j.1744-7348.2000.tb00028.x.
- Hammond J., Hammond R. W. The complete nucleotide sequence of isolate BYMV-GDD of *Bean yellow mosaic virus*, and comparison to other potyviruses. *Archives of Virology*. 2003; 148: 2461-2470. doi: 10.1007/s00705-003-0185-7.
- Nakazono-Nagaoka E., Takahashi T., Shimizu T., Kosaka Y., Natsuaki T., Omura T., Sasaya T. Cross-protection against *Bean yellow mosaic virus* (BYMV) and *Clover yellow vein virus* by attenuated BYMV isolate M11. *Phytopathology*. 2009; 99(3): 251-257. doi: 10.1094/PHYTO-99-3-0251.
- Boye K., Jensen P. E., Stumm B. M., Henningsen K. W. Nucleotide sequence of cDNA encoding the BYMV coat protein gene. *Nucleic Acids Research*. 1990; 18: 4926. doi: 10.1093/nar/18.16.4926.
- Sharma P. N., Sharma V., Sharma A., Rajput K., Sharma S. K. Identification and molecular characterization of *Bean yellow mosaic virus* infecting French bean in Himachal Pradesh. *Virus Disease*. 2015; 26(4): 315-318. doi: 10.1007/s13337-015-0270-z.
- Nakamura S., Honkura R., Ugaki M., Ohshima M., Ohashi Y. Nucleotide sequence of the 3'-terminal region of bean yellow mosaic virus RNA and resistance to viral infection in transgenic *Nicotiana benthamiana* expressing its coat protein gene. *Ann. Phytopathol. Soc. Jpn.* 1994; 62: 472-477. doi: 10.3186/jjphytopath.60.295
- Bruun-Rasmussen M., Moller I. S., Tulinius G., Hansen J. K., Lund O. S., Johansen I. E. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in *Pisum*. *Molecular Plant-Microbe Interactions*. 2007; 20(9): 1075-1082. doi: 10.1094/MPMI-20-9-1075.
- Taylor R. H., Smith P. R. The relationship between bean yellow mosaic virus and pea mosaic virus. *Australian Journal of Biological Science*. 1968; 21: 429-437.
- Takahashi Y., Takahashi T., Uyeda I. A cDNA clone to clover yellow vein potyvirus genome is highly infectious. *Virus Genes*. 1997; 14(3): 235-243. doi: 10.1023/a:1007940028058.
- Kyrychenko A. M., Antipov I. O., Hryncuk K. V. Phylogenetic analysis of Ukrainian BYMV isolates from soybeans and beans. *Cytol Genet*. 2017; 51(3): 173-178. doi: 10.3103/S0095452717030045.

Надійшла до редколегії 10.05.22
Отримано відправлений варіант 10.06.22
Підписано до друку 10.06.22

Received in the editorial 10.05.22
Received version on 10.06.22
Signed in the press on 10.06.22

А. Дуніч¹, канд. біол. наук,
Р. Свінська¹, асп.,

А. Дащенко², канд. с.-г. наук,
Л. Міщенко¹, д-р біол. наук, проф.

¹Київський національний університет імені Тараса Шевченка, Київ, Україна

²Національний університет біоресурсів і природокористування України, Київ, Україна

ФІЛОГЕНЕТИЧНИЙ АНАЛІЗ ІЗОЛЯТІВ ВІРУСУ ЖОВТОЇ МОЗАЇКИ КВАСОЛІ ІЗ ГЛАДІОЛУСІВ В УКРАЇНІ

Вірус жовтої мозаїки квасолі (ВЖМК) є одним із найбільш поширеніших та шкодочинних вірусів, що уражують рослини гладіолусів у світі. Метою роботи було провести філогенетичний аналіз двох українських ізолятів ВЖМК, виділених із гладіолусів різних областей України, і визначити їхні філогенетичні зв'язки з іншими ізолятами цього вірусу. У досліджені були використані такі методи: візуальна діагностика; імуноферментний аналіз у модифікації "сандевіч"; виділення тотальної РНК, ЗТ-ПЛР; філогенетичний аналіз; статистичні методи оброблення даних. Результатами дослідження показано, що гладіолуси сортів Пам'ять (Полтавська обл., 2018) та Галина Зелено-бірська (Київська обл., 2020) із симптомами хлоротичної штрихуваної мозаїки на листках і розривом колючору квіткової інфіковані ВЖМК. Послідовності фрагмента гена СР українських гладіолусних ізолятів вірусу жовтої мозаїки квасолі, названі GIMP-18 (МК416160) та BYMV-GI-SV-20 (MZ286966), депоновані до NCBI GenBank. Нуклеотидні послідовності цих ізолятів, які відповідають ділянці гена СР розміром 578 нуклеотидів, локалізовані у позиціях 8727-9305 вірусного геному, а також амінокислотні послідовності порівнянні із 40 відомими ВЖМК ізолятами/штамами. Філогенетичний аналіз показав, що GIMP-18 і BYMV-GI-SV-20 мають між собою ідентичність 100 % і за нуклеотидною, і за амінокислотною послідовністю. Обидва українські ізоляти належать до групи Моносот. Ідентичність двох гладіолусних ізолятів GIMP-18 і BYMV-GI-SV-20 за ділянкою гена СР із територіально віддалених областей країни та в різні роки відбору свідчить про їхнє спільне походження і їхнє поширення посадковим матеріалом.

Ключові слова: гладіолус, вірус жовтої мозаїки квасолі, філогенетичний аналіз.