MORPHO-FUNCTIONAL STATE OF RATS PINEAL GLAND AND SUPRACHIASMATIC NUCLEUS OF HYPOTHALAMUS AFTER DIFFERENT REGIMES OF EXOGENOUS MELATONIN ADMINISTRATION
DOI 10.17721/1728_2748.2020.83.17-23
Keywords:
melatonin, feedback loop, chronobiology, pinealocytes, neuron, histology, circadian system, side effectAbstract
In modern society increase of digitalization associated with grown exceed level of light at night – a new type of pollution. Presence of light at night inhibited endogenous melatonin synthesis by pineal gland, that influence on circadian system work cycles, so organism oftenbroken regime of wake/sleep, meals, physical activity. Also, a lack of melatonin in some certain time of dayand low melatonin concentration both, were shown take some intervention in diseases development through incorrect regulation of clock-depended genes expression. In connect with this, some latest clinical protocol in therapy or clinical trials of many different pathologies (for example, insomnia, metabolic syndrome, cardiovascular diseases, central nervous and immune system trouble, cancer, viral infection, etc.) include exogenous melatonin usage. As melatonin perform his function via endocrine and paracrine ways in variety types of cell, his application take place in wide range of doses and in different time of day (chronotherapeutic approach). Therefore, important to control state of circadian system central elements – pineal gland (main producer of endogenous melatonin) and suprachiasmatic nucleus (SCN) of hypothalamus (central pacemaker of circadian rhythm) in conditionsof exogenous melatonin treatment. Thus, the main goal of our research were analysis of rats pineal gland and hypothalamic SCN morpho-functional state after different time (morning, evening and continuously with drinking water) melatonin daily administration. Melatonin was administered by gavage for 7 weeks in dose 30 mg/kg 1 h before lights-off (M ZT11, evening), or 1 h after lights-on (M ZT01, morning), or continuously with drinking water during day-night period (MW). After melatonin use only in MW group pineal gland demonstrates changes in morphology (pinealocytes nucleus had mild basophilic color) and morphometric (increased cross-sectional area of the pinealocytes nucleus in compare with control group) analysis data. Besides, some similar changes were observed in SCN: the cross-sectional area of the SCN neurons nucleus grown in case of usage each of regime melatonin administration, while morphology characteristic remains without any alteration. In general, it suggesting about having by melatonin non-inhibiting features in context of circadian system feedback loop and supposing wide potential for melatonin use with absent huge side effect on central elements of above mentioned system.
References
Hardeland R. Melatonin–A pleiotropic, orchestrating regulator molecule / R. Hardeland, DP Cardinali, V. Srinivasan [et al.] // Progress in neuro biology. – 2011. – Vol. 93, №. 3. – P. 350-384.
Dubocovich M. L. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors / ML Dubocovich, P Delagrange, DN Krause [et al.] // Pharmacological reviews. – 2010. – Vol. 62, №. 3. – P. 343-380.
Nosjean O. Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2 / O. Nosjean, JP. Nicolas, F. Klupsch[et al.] // Biochemical pharmacology. – 2001. – Vol. 61, №. 11. – P. 1369-1379.
Jetten A. M. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism / A. M. Jetten // Nuclear receptor signaling. – 2009. – Vol. 7, №. 1. – P. nrs. 07003.
Zhang H. M., Zhang Y. Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions / H. M. Zhang, Y. Zhang // Journal of pineal research. – 2014. – Vol. 57, №. 2. – P. 131-146.
Baekelandt S. Seasonal simulated photoperiods influence melatonin release and immune markers of pike perch Sander lucioperca / S. Baekelandt, S. Milla, V. Cornet [et al.] // Scientific Reports. – 2020. – Vol. 10, №. 1. – P. 1-10.
Cipolla-Neto J., Amaral F. G. Melatonin as a hormone: new physiological and clinical insights / J. Cipolla-Neto, F. G. Amaral//Endocrine Reviews. – 2018. – Vol. 39, №6. – P. 990-1028.
Romero A. Coronavirus Disease 2019 (COVID-19) and its neuroinvasive capacity: Is it time for melatonin? / A. Romero, E. Ramos, F. López-Muñoz [et al.] // Cellular and molecular neurobiology. – 2020. – P. 1-12.
Russart K. L. G., Nelson R. J. Light at night as an environmental endocrine disruptor / K. L. G.Russart, R. J. Nelson // Physiology & behavior. – 2018. – Vol. 190. – P. 82-89.
Tahara Y., Shibata S. Circadian rhythms of liver physiology and disease: experimental and clinical evidence / Y.Tahara, S. Shibata // Nature Reviews Gastroenterology and Hepatology. – 2016. – Vol. 13, № 4. – P. 217.
Genario R. Melatonin supplementation in the management of obesity and obesity-associated disorders: a review of physiological mechanisms and clinical applications / R. Genario, J. Cipolla-Neto, AA Bueno [et al.] // Pharmacological Research. – 2020. – P. 105254.
De Crescenzo F. Melatonin as a treatment for mood disorders: a systematic review / F. De Crescenzo, A. Lennox, JC Gibson [et al.] //ActaPsychiatricaScandinavica. – 2017. – Vol. 136, № 6. – P. 549-558.
Karamitri A., Jockers R. Melatonin in type 2 diabetes mellitus and obesity / A.Karamitri, R. Jockers//Nature Reviews Endocrinology. – 2019. – Vol. 15, № 2. – P. 105-125.
Li Y. Melatonin for the prevention and treatment of cancer / Y. Li, S. Li, Y. Zhou [et al.] // Oncotarget. – 2017. – Vol. 8, №. 24. – P. 39896.
Pourhanifeh M. H. Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties / MH Pourhanifeh, E. Dehdashtian, A. Hosseinzadeh [et al.] // Cardiovascular Drugs and Therapy. – 2020. – P. 1-25.
Chen D., Zhang T., Lee T. H. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases / D. Chen, T. Zhang, T. H. Lee //Biomolecules. – 2020. – Vol. 10, №8. – P. 1158.
Bondy S. C., Campbell A. Melatonin and Regulation of Immune Function: Impact on Numerous Diseases. – / S. C. Bondy, A. Campbell // Curr Aging Sci. – 2020.
Savage RA, Zafar N, Yohannan S, Miller JMM. Melatonin. In: StatPearls. Treasure Island (FL): StatPearls Publishing; August 21, 2020.
Cerezo A. B. Quality control and determination of melatonin in food supplements / A. B. Cerezo, Á. Leal, M. A. Álvarez-Fernández[et al.]//Journal of food composition and Analysis. – 2016. – Vol. 45. – P. 80-86.
Soni S. K., Kumar D., Singaravel M. Melatonin-induced phase and dose responses in a diurnal mammal, Funambuluspennantii / S. K. Soni, D. Kumar, M. Singaravel // Chronobiology International. – 2020. – Vol. 37, №5. – P. 641-651.
Valizadeh M. Expression levels of two DNA repair-related genes under 8 Gy ionizing radiation and 100 mg/kg melatonin delivery in rat peripheral blood / M. Valizadeh, A. Shirazi, P. Izadi [et al.] // Journal of biomedical physics & engineering. – 2017. – Vol. 7, №1. – P. 27-36.
Pinato L. Day/night expression of MT1 and MT2 receptors in hypothalamic nuclei of the primate Sapajusapella / L. Pinato, D. Ramos, A. Hataka [et al.] // Journal of chemical neuroanatomy. – 2017. – Vol. 81. – P. 10-17.
Dijk D. J., Duffy J. F. Novel approaches for assessing circadian rhythmicity in humans: A review / D. J. Dijk, J. F. Duffy // Journal of Biological Rhythms. – 2020. – Vol. 35, №. 5. – P. 421-438.
Tan D. X., Manchester L. C., Reiter R. J. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal / D. X. Tan, L. C. Manchester, R. J. Reiter //Medical hypotheses. – 2016. – Vol. 86. – P. 3-9.
Herzog E. D. Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms / ED Herzog, T. Hermanstyne, NJ Smyllie [et al.] // Cold Spring Harbor perspectives in biology. – 2017. – Vol. 9, № 1. – P. a027706.
Kalmukova O. Effect of melatonin different time administration on the development of diet-induced obesity in rats / O. Kalmukova, A. Pustovalov, I. Vareniuk [et al.] // Bulletin of Taras Shevchenko National University of Kyiv-Problems of Physiological Functions Regulation. – 2018. – Vol. 23, №. 2. – P. 20-27.
Szewczyk‐Golec K., Woźniak A., Reiter R. J. Inter‐relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity / K. Szewczyk‐Golec, A. Woźniak, R. J. Reiter // Journal of pineal research. – 2015. – Vol. 59, №. 3. – P. 277-291.
Foley H. M., Steel A. E. Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence / H. M. Foley, A. E. Steel //Complementary therapies in medicine. – 2019. – Vol. 42. – P. 65-81.
Paxinos G., Watson C. The rat brain in stereotaxic coordinates: hard cover edition. – Elsevier, 2006.
Manno F. A. M., Lau C. The pineal gland of the shrew (Blarinabrevicauda and Blarinacarolinensis): a light and electron microscopic study of pinealocytes / F. A. M. Manno, C. Lau // Cell and tissue research. – 2018. – Vol. 374, № 3. – P. 595-605.
Brunner P. Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer's disease / P. Brunner, N. Sözer-Topcular, R. Jockers [et al.] // European Journal of Histochemistry. – 2006. – Vol. 50, № 4. – P. 311-316.
Gorman M. R. Temporal organization of pineal melatonin signaling in mammals / M. R. Gorman // Molecular and Cellular Endocrinology. – 2020. – Vol. 503. – P. 110687.
Harpsøe N. G. Clinical pharmacokinetics of melatonin: a systematic review / NGHarpsøe, LPAndersen, IGögenur [et al.] // European journal of clinical pharmacology. – 2015. – Vol. 71, № 8. – P. 901-909.
Liu C. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock / C. Liu, DR Weaver, X. Jin [et al. // Neuron. – 1997. – Vol. 19, № 1. – P. 91-102.
Kandalepas P. C., Mitchell J. W., Gillette M. U. Melatonin signal transduction pathways require E-box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk / P. C. Kandalepas, J. W. Mitchell, M. U. Gillette // PLoS One. – 2016. – Vol. 11, №6. – P. e0157824.
Mendoza-Viveros L. miR-132/212 modulates seasonal adaptation and dendritic morphology of the central circadian clock / L. Mendoza-Viveros, CK Chiang, JLK Ong [et al.] // Cell reports. – 2017. – Vol. 19, № 3. – P. 505-520.
Reiter R. J., Rosales-Corral S., Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology / R. J. Reiter, S. Rosales-Corral, R. Sharma // Advances in medical sciences. – 2020. – Vol. 65, № 2. – P. 394-402.
Abbott S. M., Malkani R. G., Zee P. C. Circadian disruption and human health: A bidirectional relationship / S. M. Abbott, R. G. Malkani, P. C. Zee // European Journal of Neuroscience. – 2020. – Vol. 51, №. 1. – P. 567-583.
Dallaspezia S. Chronotype influences response to antidepressant chronotherapeutics in bipolar patients / Dallaspezia S, Suzuki M, Clara L [et al.] // Chronobiology International. – 2018. – Vol. 35, № 9. – P. 1319-1325.
Aulinas A. Physiology of the Pineal Gland and Melatonin // Endotext [Internet]. – MDText. com, Inc., 2019
