ASTROBIOLOGY: A BRIEF HISTORICAL EXCURSION, ITS CURRENT STATE AND PROSPECTS OF DEVELOPMENT IN UKRAINE

doi.org/10.17721/1728.2748.2025.100.5-14

Authors

Keywords:

astrobiology, astroecology, astrobiological scientific and educational centers

Abstract

At the present stage of the development of human civilization the rapid development of high-tech space technologies, growing scientific and commercial interest in space, and also increased attention to fundamental questions about the origin and future of life in the Universe require the formation of new scientific efforts regarding the understanding of the phenomenon of life, the emergence of the biosphere, and the planetary role of man in the further evolution of planet Earth. Modern society is actively seeking answers to lifelong questions related to whether our biosphere is the only form of life in space, and whether human contact with extraterrestrial life forms and civilizations is possible. The search for these answers is facilitated by such a science as astrobiology. The purpose of this publication is a brief overview of the current state of astrobiology based on publications in leading scientific journals over the past decades, as well as an analysis of the potential opportunities for the development of this science in Ukraine.
Astrobiology as a science is an interdisciplinary field that studies the question of the origin of life on Earth, how it has evolved on this planet for billions of years, its limits, and the existence of life beyond Earth, its possible forms and modes of life existence, as well as the conditions for the emergence and development of life in the Universe. Astrobiology investigates whether life, as a cosmic phenomenon, can exist beyond Earth in various forms, including terrestrial ones delivered by spacecraft to other planets. The main goal of astrobiology is to search for and study various forms of life beyond Earth, as well as to study the existence of terrestrial life forms in extreme conditions, close to the conditions of open space and environmental conditions on other planets of the Solar and other stellar systems. An important interdisciplinary area of research in modern astrobiology is the study of the chemical composition of interstellar space and chemical processes that can lead to the formation of organic molecules. Abiogenic synthesis of organic compounds in outer space can occur under conditions of extremely low temperatures, cosmic vacuum and high levels of ionizing radiation. The theory of the spontaneous origin of life on planet Earth suggests that the first simplest living organisms arose by self-organization from organic compounds that were formed as a result of their abiogenic synthesis. The possibility of abiogenic synthesis of biologically relevant organic molecules has been experimentally proven. But the idea of the spontaneous origin of life as a molecular-informational phenomenon still remains hypothetical. The alternative viewpoint is a theory of panspermia. This theory assumes the process of spontaneous origin of life somewhere else in space, such as on another planetary body, and living organisms came to Earth with space dust, comets and asteroids. The possibility that organisms can survive movement through space is supported by some experimental confirmation based on studies of the resistance of certain types of organisms to extreme factors of open space and environmental conditions on some planets and satellites, in particular on Mars, Enceladus and other celestial bodies. An important area of research in modern astrobiology is the search for biosignatures that can reliably indicate the presence of certain life forms. The development of astrobiology gives rise to a number of systemic issues that must be resolved and which should form a systemic vision of the possibility of the existence of various life forms on other planets. An important issue in astrobiology is the problem of the influence of cosmic factors on the terrestrial biosphere and possible biospheres of other planets. These factors are primarily associated with the activity of stars around which planetary systems are formed. In connection with the active development of space missions to the planets of the Solar System, the question arose of the possibility of transferring terrestrial life forms on space probes to other planets, which in turn raises a number of problems associated with astrobiological "pollution" and the ethical responsibility of human civilization for the spread of terrestrial life forms as a result of contamination of space probes. The review pays special attention to the issues of training highly qualified specialists in the field of astrobiology at universities and relevant educational and scientific centers, in particular on the basis of the UK Astrobiology Center of the University of Edinburgh. The need to open an International Astrobiology Center on the basis of Taras Shevchenko National University of Kyiv together with the University of Edinburgh is substantiated.
Astrobiology is a new, interdisciplinary, and in-demand science. It has its own scientific challenges and methodology. The further development of this field of knowledge requires the involvement of specialists from various natural and humanitarian disciplines, who need to be trained through new interdisciplinary educational courses and programs for the preparation of bachelors, masters, and doctors of philosophy

Author Biography

  • Viktor MARTYNYUK, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

    1980-1985 Student of the Biology faculty of Simferopol State University. Specialization in biochemistry.

    1998-2001 Postgraduate student of the department of physiology and biophysics in the Simferopol State University.

    1992 A Philosophy Doctor degree (PhD) in biology with specialization in physiology of human and animals. PhD dissertation: “Influence of Extremely Low Frequency Magnetic Fields on Time Organization of Physiological Processes”.

    1992-1996 Professor assistant and researcher of the biochemistry department of Simferopol State University.

    1996-2001 Associate professor of the department of biochemistry of Simferopol state university.

    2001-2005 Scientific secretary of the Crimean scientific centre of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine.

    2005 – 2008 Associate professor of the department of biophysics in Taras Shevchenko Kiev National University of Kyiv.

    2008 Obtained a higher scientific degree Doctor of Biological Science with specialization in Biophysics. Dissertation: “Influence of Magnetic Fields on Human and Animal Organism”.

    2008 – 2009 Professor of the Department of Biophysics in Taras Shevchenko Kiev National University of Kyiv.

    2009 – 2015 Chair of the Department of Biophysics, Professor in Education-Scientific Center “Institute of Biology” of Taras Shevchenko Kiev National University of Kyiv.

    2015-2020 Vice-rector for scientific work of the Taras Shevchenko National University of Kyiv.

    2020 Professor of the Department of Biophysics and Medical Informatics in ESC "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv.

    2006 - 2011 Scientific secretary of Ukrainian Biophysical Society of Ukraine.

    2011 Vice-president of Ukrainian Biophysical Society of Ukraine.

    2007 – 2015 Second editor-in-chief of scientific journal "Physics of the Alive".

    2020 – present day – professor of the Department of Biophysics and Neurobiology of Institute of Biology and Medicine.

    2024 President of Ukrainian Biophysical Society of Ukraine.

References

Airapetian, V. S., Barnes, R., Cohen, O., Collinson, G. A., Airapetian, V. S., Barnes, R., Cohen, O., Collinson, G. A., Danchi, W. C., Dong, C. F., Del Genio, A. D., France, K., Garcia-Sage, K., Glocer, A., Gopalswamy, N., Grenfell, J. L., Gronoff, G., Güdel, M., Herbst, K., Henning, W. G., Jackman, C. H., Jin, M., Johnstone, C. P., … & Yamashiki, Y. (2020). Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 19(2), 136–194. https://doi.org/10.1017/S1473550419000132

Al Soudi, A. F., Farhat, O., Chen, F., Benton, C., Clark, B. C., & Schneegurt, M. A. (2017). Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars. International Journal of Astrobiology, 16(3), 229–235. https://doi.org/10.1017/S1473550416000434

Annis, J. (1999). Placing a limit on star-fed Kardashev type III civilisations. Journal of the British Interplanetary Society, 52(1), 33–36.

Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A., & Little, B. (2001). Mineralogical biosignatures and the search for life on Mars. Astrobiology, 1(4), 447–465. https://doi.org/10.1089/153110701753593856

Bowman, J. C., Petrov, A. S., Frenkel-Pinter, M., Penev, P. I., & Williams, L. D. (2020). Root of the tree: The significance, evolution, and origins of the ribosome. Chemical Reviews, 120(11), 4848–4878. https://doi.org/10.1021/acs.chemrev.9b00742

Burchell, M. J. (2004). Panspermia today. International Journal of Astrobiology, 3(2), 73–80. https://doi.org/10.1017/S1473550404002113

Buzulukova, N., & Tsurutani, B. (2022). Space weather: From solar origins to risks and hazards evolving in time. Frontiers in Astronomy and Space Sciences, 9, Article 1017103. https://doi.org/10.3389/fspas.2022.1017103

Carr, B. J., & Rees, M. J. (2003). Fine-tuning in living systems. International Journal of Astrobiology, 2(2), 79–86. https://doi.org/10.1017/S1473550403001472

Carte, M. E., Chen, F., Clark, B. C., & Schneegurt, M. A. (2024a). Succession of the bacterial community from a spacecraft assembly clean room when enriched in brines relevant to Mars. International Journal of Astrobiology, 23, Article e5. https://doi.org/10.1017/S1473550423000277

Carte, M. E., Gandikota, S., Chen, F., Clark, B. C., & Schneegurt, M. A. (2024b). Succession of the fungal community of a spacecraft assembly clean room when enriched in brines relevant to Mars. International Journal of Astrobiology, 23, Article e15. https://doi.org/10.1017/S1473550424000090

Chon-Torres, O. A. (2018). Astrobioethics. International Journal of Astrobiology, 17(1), 51–56. https://doi.org/10.1017/S1473550417000064

Chon-Torres, O. A., Chela-Flores, J., Dunér, D., Persson, E., Milligan, T., Martínez-Frías, J., Losch, A., Pryor, A., & Murga-Moreno, C. A. (2024). Astrobiocentrism: Reflections on challenges in the transition to a vision of life and humanity in space. International Journal of Astrobiology, 23, Article e6. https://doi.org/10.1017/S1473550424000016

Chou, L., Grefenstette, N., & Borges, S. (2024). Chapter 8: Searching for life beyond Earth. Astrobiology, 24(S1), S149–S167. https://doi.org/10.1089/ast.2021.0104

Cleland, C. E., & Copley, S. D. (2005). The possibility of alternative microbial life on Earth. International Journal of Astrobiology, 4(3–4), 165–173. https://doi.org/10.1017/S147355040500279X

Colón-Santos, S., Vázquez-Salazar, A., Adams, A., Colón-Santos, S., Vázquez-Salazar, A., Adams, A., Campillo-Balderas, J. A., Hernández-Morales, R., Jácome, R., Muñoz-Velasco, I., Rodriguez, L. E., Schaible, M. J., Schaible, G. A., Szeinbaum, N., Thweatt, J. L., & Trubl, G. (2024). Chapter 2: What is life? Astrobiology, 24(S1), S24–S41. https://doi.org/10.1089/ast.2021.0116

DasSarma, P., Laye, V. J., Harvey, J., Reid, C., Shultz, J., Yarborough, A., Lamb, A., Koske-Phillips, A., Herbst, A., Molina, F., Grah, O., Phillips, T., & DasSarma, S. (2017). Survival of halophilic Archaea in Earth's cold stratosphere. International Journal of Astrobiology, 16(4), 321–327. https://doi.org/10.1017/S1473550416000410

De Sanctis, M. C., Baratta, G. A., Brucato, J. R., De Sanctis, M. C., Baratta, G., Brucato, J. R., Castillo-Rogez, J. C., Ciarniello, M., Cozzolino, F., De Angelis, S., Ferrari, M., Fulvio, D., Germanà, M., Mennella, V., Pagnoscin, S., Palumbo, M. E., Poggiali, G., Popa, C., Raponi, A., Scirè, C., Strazzulla, G., & Urso, R. G. (2024). Recent replenishment of aliphatic organics on Ceres from a large subsurface reservoir. Science Advances, 10(39), Article eadp3681. https://doi.org/10.1126/sciadv.adp3681

Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften, 58(10), 465–523. https://doi.org/10.1007/BF00623322

Eigen, M., & Schuster, P. (1982). Stages of emerging life – Five principles of early organization. Journal of Molecular Evolution, 19(1), 47–61. https://doi.org/10.1007/BF02100223

Extance, A. (2024). How the James Webb Space Telescope is revealing the weather and chemistry on planets around other stars. ACS Central Science, 10(7), 1307–1310. https://doi.org/10.1021/acscentsci.4c00820

Fischer, D., Sheffield, A., Tan, J., Ling, L., & Zhao, C. (2022). Technosignatures. Astrobiology. https://pressbooks.cuny.edu/astrobiology/chapter/technosignatures/

Fiore, M., Chieffo, C., & Lopez, A. (2022). Synthesis of phospholipids under plausible prebiotic conditions and analogies with phospholipid biochemistry for origin of life studies. Astrobiology, 22(5), 598–616. https://doi.org/10.1089/ast.2021.0059

Franqueria, M., Raut, A., Devi, A., & Pandit, S. (2022). New methodologies in the search for life: Final report. International Space University Space Studies Program. https://doi.org/10.13140/RG.2.2.25712.94727

Frenkel-Pinter, M., Samanta, M., Ashkenasy, G., & Leman, L. J. (2020). Prebiotic peptides: Molecular hubs in the origin of life. Chemical Reviews, 120(11), 4707–4765. https://doi.org/10.1021/acs.chemrev.9b00664

Genge, M. J., Almeida, N., Van Ginneken, M., Pinault, L., Preston, L. J., Wozniakiewicz, P. J., & Yano, H. (2024). Rapid colonization of a space-returned Ryugu sample. Meteoritics & Planetary Science, 60(1), 64–73. https://doi.org/10.1111/maps.14288

Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C., & Dworkin, J. P. (2020). The search for chiral asymmetry as a potential biosignature in our solar system. Chemical Reviews, 120(11), 4660–4689. https://doi.org/10.1021/acs.chemrev.9b00474

Gobato, R., Heidari, A., Mitra, A., & Valverde, L. F. (2022). The possibility of silicon-based life. Bulletin of Pure & Applied Sciences-Chemistry, 41(1), 52–58. https://doi.org/10.5958/2320-320X.2022.00007.3

Houtkooper, J. M., & Schulze-Makuch, D. (2007). A possible biogenic origin for hydrogen peroxide on Mars: The Viking results reinterpreted. International Journal of Astrobiology, 6(2), 147–152. https://doi.org/10.1017/S1473550407003746

Janzen, E., Blanco, C., Peng, H., Kenchel, J., & Chen, I. A. (2020). Promiscuous ribozymes and their proposed role in prebiotic evolution. Chemical Reviews, 120(11), 4879–4897. https://doi.org/10.1021/acs.chemrev.9b00620

Jennifer Kan, S. B., Lewis, R. D., Chen, K., & Arnold, F. H. (2016). Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science, 354(6315), 1048–1051. https://doi.org/10.1126/science.aah6219

Kaiser, R. I., & Balucani, N. (2002). Astrobiology – The final frontier in chemical reaction dynamics. International Journal of Astrobiology, 1(1), 15–23. https://doi.org/10.1017/S1473550402001015

Kelly, C. S. (2016). Life is hard: Countering definitional pessimism concerning the definition of life. International Journal of Astrobiology, 15(4), 277–289. https://doi.org/10.1017/S1473550416000021

Lehto, K., & Karetnikov, A. (2005). Relicts and models of the RNA world. International Journal of Astrobiology, 4(1), 33–41. https://doi.org/10.1017/S1473550405002521

Lingam, M., & Loeb, A. (2020). What's in a name: The etymology of astrobiology. International Journal of Astrobiology, 19(6), 489–495. https://doi.org/10.1017/S1473550420000154

Lingam, M., & Loeb, A. (2021). Life in the cosmos: From biosignatures to technosignatures. Harvard University Press.

Lorenz, C., Bianchi, E., Benesperi, R., Loppi, S., Papini, A., Poggiali, G., & Brucato, J. R. (2022). Survival of Xanthoria parietina in simulated space conditions: Vitality assessment and spectroscopic analysis. International Journal of Astrobiology, 21(3), 137–153. https://doi.org/10.1017/S1473550422000076

Lukas Pleyer, H. L., Strasdeit, H., & Fox, S. (2018). A possible prebiotic ancestry of porphyrin-type protein cofactors. Origins of Life and Evolution of Biospheres, 48(3), 347–371. https://doi.org/10.1007/s11084-018-9567-4

Mahipal Yadav, M., Kumar, R., & Krishnamurthy, R. (2020). Chemistry of abiotic nucleotide synthesis. Chemical Reviews, 120(11), 4766–4805. https://doi.org/10.1021/acs.chemrev.9b00546

Malaterre, C., Jeancolas, C., & Nghe, P. (2022). The origin of life: What is the question? Astrobiology, 22(7), 851–862. https://doi.org/10.1089/ast.2021.0162

Mancinelli, R. L. (2015). The effect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): Data from the space experiment OSMO on EXPOSE-R. International Journal of Astrobiology, 14(1), 123–128. https://doi.org/10.1017/S147355041400055X

Marinho, F., Paulucci, L., & Galante, D. (2014). Propagation and energy deposition of cosmic rays' muons on terrestrial environments. International Journal of Astrobiology, 13(4), 319–323. https://doi.org/10.1017/S1473550414000160

McKay, C. P. (2020). What is life – And when do we search for it on other worlds. Astrobiology, 20(2), 163–166. https://doi.org/10.1089/ast.2019.2136

Meurer, J. C., Haqq-Misra, J., & de Souza Mendonça, M. (2024). Astroecology: Bridging the gap between ecology and astrobiology. International Journal of Astrobiology, 23, Article e3. https://doi.org/10.1017/S1473550423000265

Nascimento-Dias, B. L., & Martinez-Frias, J. (2023). Brief review about history of astrobiology. International Journal of Astrobiology, 22(1), 67–78. https://doi.org/10.1017/S1473550422000386

Neuberger, K., Lux-Endrich, A., Panitz, C., & Horneck, G. (2015). Survival of spores of Trichoderma longibrachiatum in space: Data from the space experiment SPORES on EXPOSE-R. International Journal of Astrobiology, 14(1), 129–135. https://doi.org/10.1017/S1473550414000408

Olsson-Francis, K., Watson, J. S., & Cockell, C. S. (2013). Cyanobacteria isolated from the high-intertidal zone: A model for studying the physiological prerequisites for survival in low Earth orbit. International Journal of Astrobiology, 12(4), 292–303. https://doi.org/10.1017/S1473550413000104

Panitz, C., Horneck, G., Rabbow, E., Rettberg, P., Moeller, R., Cadet, J., Douki, T., & Reitz, G. (2015). The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites. International Journal of Astrobiology, 14(1), 105–114. https://doi.org/10.1017/S1473550414000251

Pavletić, B., Runzheimer, K., Siems, K., Koch, S., Cortesão, M., Ramos-Nascimento, A., & Moeller, R. (2022). Spaceflight virology: What do we know about viral threats in the spaceflight environment? Astrobiology, 22(2), 210–224. https://doi.org/10.1089/ast.2021.0009

Peters, T. (2018). Does extraterrestrial life have intrinsic value? An exploration in responsibility ethics. International Journal of Astrobiology, 17(4), 347–355. https://doi.org/10.1017/S147355041700057X

Petkowski, J. J., Bains, W., & Seager, S. (2020). On the potential of silicon as a building block for life. Life, 10(6), Article 84. https://doi.org/10.3390/life10060084

Pleyer, H. L., Moeller, R., Fujimori, A., Fox, S., & Strasdeit, H. (2022). Chemical, thermal, and radiation resistance of an iron porphyrin: A model study of biosignature stability. Astrobiology, 22(7), 877–889. https://doi.org/10.1089/ast.2021.0144

Prasad, B., Richter, P., Vadakedath, N., Haag, F. W. M., Prasad, B., Richter, P., Vadakedath, N., Haag, F. W. M., Strauch, S. M., Mancinelli, R., Schwarzwälder, A., Etcheparre, E., Gaume, N., & Lebert, M. (2021). How the space environment influences organisms: An astrobiological perspective and review. International Journal of Astrobiology, 20(3), 159–177. https://doi.org/10.1017/S1473550421000057

Puzzarini, C., & Barone, V. (2020). A never-ending story in the sky: The secrets of chemical evolution. Physics of Life Reviews, 32, 59–94. https://doi.org/10.1016/j.plrev.2019.07.001

Rizos, J. L., Sunshine, J. M., Daly, R. T., Nathues, A., De Sanctis, M. C., Raponi, A., Pasckert, J. H., Farnham, T. L., Kloos, J., & Ortiz, J. L. (2024). New candidates for organic-rich regions on Ceres. The Planetary Science Journal, 5(12), Article 270. https://doi.org/10.3847/PSJ/ad86ba

Robinson, A., & McQuaig, S. (2022). Haloferax volcanii remains viable and shows morphological changes under anoxic (CO2-enriched) and hypobaric (2.4 kPa) atmospheric conditions. Astrobiology, 22(7), 829–837. https://doi.org/10.1089/ast.2021.0076

Roche, M. J., Fox-Powell, M. G., Hamp, R. E., & Byrne, J. B. (2023). Iron reduction as a viable metabolic pathway in Enceladus' ocean. International Journal of Astrobiology, 22(5), 539–558. https://doi.org/10.1017/S1473550423000125

Rzymski, P., Poniedziałek, B., Hippmann, N., & Kaczmarek, L. (2022). Screening the survival of cyanobacteria under perchlorate stress: Potential implications for Mars in situ resource utilization. Astrobiology, 22(6), 672–684. https://doi.org/10.1089/ast.2021.0100

Sandford, S. A., Nuevo, M., Bera, P. P., & Lee, T. J. (2020). Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chemical Reviews, 120(11), 4616–4659. https://doi.org/10.1021/acs.chemrev.9b00560

Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Harman, C. E., DasSarma, S., Fisher, T. M., Arney, G. N., Hartnett, H. E., Reinhard, C. T., Olson, S. L., Meadows, V. S., Cockell, C. S., Walker, S. I., Grenfell, J. L., Hegde, S., Rugheimer, S., Hu, R., & Lyons, T. W. (2018). Exoplanet biosignatures: A review of remotely detectable signs of life. Astrobiology, 18(6), 663–708. https://doi.org/10.1089/ast.2017.1729

Shields, A. L. (2019). The climates of other worlds: A review of the emerging field of exoplanet climatology. The Astrophysical Journal Supplement Series, 243(2), Article 30. https://doi.org/10.3847/1538-4365/ab2fe7

Smith, R. S. (2016). Life is hard: countering definitional pessimism concerning the definition of life. International Journal of Astrobiology, 15(4), 277–289. http://doi.org/10.1017/S1473550416000021

Styczinski, M. J., Glaser, D. M., Hooks, M., Jia, T. Z., Johnson-Finn, K., Schaible, G. A., & Schaible, M. J. (2024). Chapter 11: Astrobiology education, engagement, and resources. Astrobiology, 24(S1), S208–S230. https://doi.org/10.1089/ast.2021.0098

Temple, R. (2007). The prehistory of panspermia: astrophysical or metaphysical? International Journal of Astrobiology, 6 (2), 169–180. http://doi.org/10.1017/S1473550407003692

Waajen, A. C., Lima, C., Goodacre, R., & Cockell, C. S. (2024). Life on Earth can grow on extraterrestrial organic carbon. Scientific Reports, 14(1), Article 3691. https://doi.org/10.1038/s41598-024-54195-6

Wickramarathna, S., Chandrajith, R., Senaratne, A., Paul, V., Dash, P., Wickramasinghe, S., & Biggs, P. J. (2021). Bacterial influence on the formation of hematite: Implications for Martian dormant life. International Journal of Astrobiology, 20(6), 398–412. https://doi.org/10.1017/S1473550421000124

Wickramasinghe, C. (2011). Bacterial morphologies supporting cometary panspermia: A reappraisal. International Journal of Astrobiology, 10(1), 25–30. https://doi.org/10.1017/S1473550410000157

Zarrouk, N., & Bennaceur, R. (2009). Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis. International Journal of Astrobiology, 8(3), 169–174. https://doi.org/10.1017/S1473550409990085

Published

2025-10-14