ANTIHERPETIC ACTION OF CERIUM SALTS IN VITRO

DOI 10.17721/1728.2748.2022.89.28-31

Authors

  • Mrs., Ph.D., Senior Research Fellow D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0003-2792-9787
  • miss, PhD student D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0001-7454-4842

Keywords:

herpes simplex virus (HSV-1/2), Се3 and Се4 salts, antiviral activity in vitro

Abstract

Compounds based on cerium are highly promising objects in biotechnology regarding their high biological activities such as antiviral, antibacterial, antifungal, neuro- and radioprotective action, and antioxidant activity. On their basis is possible to develop compositions capable of activating the systems of cellular and humoral immune defence and use them for the prevention and therapy of viral diseases, which makes it achievable to use them for the development of potential antiherpetic agents. Despite the success of their application in biotechnological fields, the mechanism of their action on biological objects requires detailed research.

The work aimed to verify in vitro anti-HSV-1/2 activity of trivalent and tetravalent cerium salts (1 mM – 0.01 nM) according to the preventive and therapeutic regimen.

Methods: virological, cytological, statistical.

Results. The therapeutic regime was noneffective. In the preventive regime, salt (NH4)2Ce(NO3)6 in vitro forms antiviral resistance in the range of investigated concentrations, while the salt CeCl3·7Н2О forms a non-linear, sinusoidal-like concentration-dependent anti-HSV-1/2 response of cells.

Conclusions. Cerium salts (III and IV) can cause the formation of a state of antiviral resistance in the model system MA-104 - HSV-1/2 during their previous 24 h of contact with test cells. Cerium salt (IV) provides 50% inhibition of the cytopathic action of HSV-1/2 at a concentration of 1 μM. It is assumed that the shown antiviral activity of cerium salts may be due to their effect on the interferon system and the formation of antiviral resistance in cells.

References

Thakur, N., Manna, P. and Das, J. (2019). Synthesis and biomedical applications of nanoceria, a redox-active nanoparticle. Journal of Nanobiotechnology, 17(1), 1-27, DOI:10.1186/s12951-019-0516-9.

Shcherbakov, A. B., Zholobak, N. M., & Ivanov, V. K. (2020). Biological, biomedical and pharmaceutical applications of cerium oxide. In Cerium oxide (CeO₂): synthesis, properties and applications, 279-358. Elsevier. DOI:10.1016/B978-0-12-815661-2.00008-6.

Shydlovsʹka, O. A., Kharchenko, YE., Osinniy, I. M., Spivak, M. YA., Shcherbakov, O. B., & Zholobak, N. M. (2018). Nanochastynky dioksydu tseriyu–efektyvnyy antyvirusnyy zasib ta adʺyuvant biolohichno-aktyvnykh molekul. ScienceRise. Biological science, (1), 26-30, DOI:10.15587/2519-8025.2018.124686.

Zholobak, N. M., Olevinskaya, Z. M., Spivak, N. YA., Shcherbakov, A. B., Ivanov, V. K., & Usatenko, A. V. (2010). Antivirusnoye deystviye nanochastits oksida tseriya, stabilizirovannykh nizkomolekulyarnoy poliakrilovoy kislotoy. Míkrobíologíchniy zhurnal, 72 (3), 42-47, http://nbuv.gov.ua/UJRN/MicroBiol_2010_72_3_8.

Schubert, D., Dargusch, R., Raitano, J. and Chan, S. W. (2006). Cerium and yttrium oxide nanoparticles are neuroprotective. Biochemical and biophysical research communications, 342(1), 86–91, DOI:10.1016/J.BBRC.2006.01.129

Dahle, J. T., & Arai, Y. (2015). Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. International journal of environmental research and public health, 12(2), 1253–1278. DOI:10.3390/ijerph120201253.

Zholobak, N. M. (2016). Voprosu o mekhanyzme antybakteryalʹnoho y probyotycheskoho deystvyya kolloydnoho (nanorazmernoho) dyoksyda tseryya. Visnyk problem biolohiyi i medytsyny, 2(1), 9-15, https://vpbm.com.ua/ua/vpbm-2016-01-2/7601.

Zholobak, N. M., Ivanov, V. K., Shcherbakov, A.B. (2016) Interaction of nanoceria with microorganisms. In Nanobiomaterials in Antimicrobial Therapy, 419-450. Elsevier. DOI:10.1016/B978-0-323-42864-4.00012-9.

Shcherbakov, A. B., Zholobak, N. M., Ivanov, V. K., Tret'yakov, YU. D., & Spivak, N. YA. (2011). Nanomaterialy na osnove dioksida tseriya: svoystva i perspektivy ispol'zovaniya v biologii i meditsine. Biotechnologia acta, 4(1), 009-028. http://biotechnology.kiev.ua/storage/2011/%231_2011/SherbakovNo%201.pdf

Singh, A., Preiksaitis, J., Ferenczy, A., & Romanowski, B. (2005). The laboratory diagnosis of herpes simplex virus infections. The Canadian journal of infectious diseases & medical microbiology, 16 (2), 92–98, DOI:10.1155/2005/318294.

Lei, C., Yang, J., Hu, J., & Sun, X. (2021). On the calculation of TCID50 for quantitation of virus infectivity. Virologica Sinica, 36(1), 141–144. DOI:10.1007/s12250-020-00230-5.

Holland, J. J., & McLaren, L. C. (1959). Improved method for staining cell monolayers for virus plaque counts. Journal of Bacteriology, 78(4), 596-597. DOI:10.1128/jb.78.4.596-597.1959.

Feoktistova, M., Geserick, P., & Leverkus, M. (2016). Crystal violet assay for determining the viability of cultured cells. Cold Spring Harbor Protocols, 2016(4), http://cshprotocols.cshlp.org/content/2016/4/pdb.prot087379.

Kamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food Frontiers, 1(3), 332-349. DOI:10.1002/fft2.44.

Viter, V.N. (2016) Oscillating chemical reactions. Chemistry and chemists. 6. http://chemistry-chemists.com/N6_2016/ChemistryAndChemists_6_2016-P8-1.

Sherevera, Kh.P., Zholobak, N.M. (2019). Antiviral properties of cerium salts in vitro. IX International conference “Bioresources and viruses” September 9-11, 2019 Kyiv, Ukraine, 29-30. https://biomed.knu.ua/images/stories/Upload/Shevchenkivska_vesna/2020/Shevchenkivska_vesna_2020_2.pdf.

Mossman, K. (2005). Analysis of Anti-Interferon Properties of the Herpes Simplex Virus Type I ICP0 Protein. In: Carr, D.J.J. (eds) Interferon Methods and Protocols. Methods in Molecular Medicine™, vol 116. Humana Press. DOI:10.1385/1-59259-939-7:195.

Lin, R., Noyce, R. S., Collins, S. E., Everett, R. D., and Mossman, K. L. (2004) The herpes simplex virus ICP0 RING finger domain inhibits IRF3-and IRF7-mediated activation of interferon-stimulated genes. J. Virol. 78, 1675–1684. DOI:10.1128/jvi.78.4.1675-1684.2004.

Downloads

Published

2025-10-23 — Updated on 2025-10-23

Versions