RESEARCH OF INDICATORS OF OXIDATIVE STRESS IN THE KIDNEYS OF IMMATURE RATS WITH HYPERHOMOCYSTEINEMIA
DOI 10.17721/1728.2748.2022.91.5-9
Keywords:
hyperhomocysteinemia, glutathione, superoxide dismutase, catalase, kidneysAbstract
Purpose: Hyperhomocysteinemia in children can develop as a result of genetic defects, endocrine abnormalities or under the influence of dietary factors. An elevated level of homocysteine is considered a risk factor for the progression of chronic kidney disease. The aim of the work was to investigate the indicators of oxidative stress in the homogenate of the kidneys of immature rats in control and with hyperhomocysteinemia.
Methods: The concentration of reduced and oxidized glutathione, the activity of superoxide dismutase, catalase and nitric oxide synthase were determined. The model of hyperhomocysteinemia was reproduced on one-month-old male rats, which were kept on a standard vivarium diet. The experimental group was intragastrically administered by D,L-thiolactone homocysteine hydrochloride in a 1% starch solution at a dose of 200 mg/kg of body weight 1 per day for 8 weeks. The corresponding volume of 1% starch solution was injected into the control group of animals. The activity of superoxide dismutase, catalase and nitric oxide synthase were determined spectrophotometrically. Concentration of reduced and oxidized glutathione by fluorometric method.
Results: It was established that upon hyperhomocysteinemia the concentration of reduced glutathione, the activity of superoxide dismutase, catalase, and nitric oxide synthase was decreased against the background of an increase in the concentration of oxidized glutathione in the homogenate of the kidneys of immature rats.
Conclusions: The obtained results indicate that in the kidneys of immature rats, the development of oxidative stress occurs in the direction characteristic of adult animals. The obtained results indicate that in the kidneys of immature rats the development of oxidative stress resembles the adult animals. The obtained results showed a decrease in the concentration of reduced glutathione and the activity of antioxidant defense enzymes which may indicate the development of pathological processes in the kidneys.
References
Kellum J, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders H. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi:10.1038/s41572-021-00284-z
Poddar R. Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke. Exp Neurol. 2021;336:113541. doi:10.1016/j.expneurol. 2020.113541
Mallamaci F, Zoccali C, Tripepi G, Fermo I, Benedetto F, Cataliotti A, et al. Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients. Kidney Int. 2002;61(2):609-14. doi:10.1046/j.1523-1755.2002.00144.x
Elsherbiny N, Sharma I, Kira D, Alhusban S, Samra Y, Jadeja R, et al. Homocysteine Induces inflammation in retina and brain. Biomolecules. 2020;10(3):393. doi:10.3390/biom10030393
Kozat S., Okman E. Homocystein: A new biochemical marker in livestock sector. J Adv Vet Anim Res. 2017; 4(4):319-32. doi:10.5455/javar.2017.d230
Bostom A, Rosenberg I, Silbershatz H, Jacques P, Selhub J, D'Agostino R, et al. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: the Framingham Study. Ann Intern Med. 1999;131(5):352-5. doi:10.7326/0003-4819-131-5-199909070-00006
Sacharow S, Picker J, Levy H. Homocystinuria caused by cystathionine beta-synthase deficiency. In: Adam M, Everman D, Mirzaa G, et al., eds. GeneReviews. Seattle (WA): University of Washington, Seattle; 2004-2017. Available from: www.ncbi.nlm.nih.gov/books/NBK1524/
Weber G, Poloni S, Blom H, Schwartz I. Three Main Causes of Homocystinuria: CBS, cblC and MTHFR Deficiency. What do they Have in Common? J. inborn errors metab. screen. 2019;7:e20190007. doi:10.1590/2326-4594-JIEMS-2019-0007
Zhuo J, Wang H, Praticò D. Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol Sci. 2011;32(9):562-71. doi:10.1016/j.tips.2011.05.003
Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine. 2018;54(4):287-93. doi:10.1016/j.ajme.2017.09.001
Ganguly P, Alam S. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. doi:10.1186/1475-2891-14-6
Nyui M, Shoji Y, Ueno M, Nakanishi I, Matsumoto K. Reduction of molecular oxygen by redox active thiols: comparison of glutathione, N-acetylcysteine, cysteine, and homocysteine. J Clin Biochem Nutr. 2019;65(3):185-92. doi:10.3164/jcbn.19-25
Perna A, Ingrosso D, Lombardi C, Acanfora F, Satta E, Cesare C, et al. Possible mechanisms of homocysteine toxicity. Kidney Int Suppl. 2003;(84):S137-40. doi:10.1046/j.1523-1755.63.s84.33.x
Lai W, Kan M. Homocysteine-induced endothelial dysfunction. Ann Nutr Metab. 2015;67(1):1-12. doi:10.1159/000437098
Serbin A, Komar Y, Koval T, Kharchenko O, Andriychuk Т. Study of proteolytic activity in rats kidney and liver during the development of chronic alcoholic intoxication. Visnyk Taras Shevchenko national university of Kyiv. Biology. 2021;85(2):42-6. doi:10.17721/1728_2748.2021.85.42-46
Raksha N, Maievskyi O, Dzevulska I, Kaminsky R, Samborska I, Savchuk O, et al. Proteolytic activity in the heart of rats with hyperhomocysteinemia. Wiad Lek. 2022;75(4):831-5. doi:10.36740/WLek202204115
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. doi:10.1006/abio.1976.9999
Ruch R, Cheng S, Klaunig J. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10(6):1003-8. doi:10.1093/carcin/10.6.1003
Chakraborthy G. Free radical scavenging activity of Aesculus indica leaves. Inter J PharmTech Research 2009;1:524-6.
Salter M, Knowles R, Moncada S. Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. FEBS Lett. 1991;291(1):145-9. doi:10.1016/0014-5793(91)81123-p
Chin S, Pandey K, Shi S, Kobori H, Moreno C, Navar L. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG IIinfused hypertensive rats. Am J Physiol. 1999;277(5):F797-804. doi:10.1152/ajprenal.1999.277.5.F797
Demchenko A. Glutathione system state in a hemolysate of erythrocytes among the patients with chronic cerebral ischemia. East european journal of neurologyer. 2016;4:30-6.
Wu X, Zhang L, Miao Y, Yang J, Wang X, Wang C, et al. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 2019;20:46-59. doi:10.1016/j.redox.2018.09.021
Taysi S. Oxidant/antioxidant status in liver tissue of vitamin B6 deficient rats. Clin Nutr. 2005;24(3):385-9. doi:10.1016/j.clnu.2004.12.001
Melnik A, Zaichko N. Gender characteristics of hyperhomocysteinemia effect on metabolism of sulfur-containing amino acids and hydrogen sulfide in liver. Medical and Clinical Chemistry. 2017;1:95-101. doi:10.11603/mcch.2410-681X.2017.v0.i1.7352
Jurkowska H, Kaczor-Kamińska M, Bronowicka-Adamska P, Wróbel M. γ–Liaza cystationinowa [Cystathionine γ-lyase]. Postepy Hig Med Dosw. 2014;68:1-9. doi:10.5604/17322693.1085372
Lubos E, Loscalzo J, Handy D. Homocysteine and glutathione peroxidase-1. Antioxid Redox Signal. 2007;9(11):1923-40. doi:10.1089/ars.2007.1771
Tawfik A, Samra Y, Elsherbiny N, Shabrawey M. Implication of hyperhomocysteinemia in blood retinal barrier (BRB) dysfunction. Biomolecules. 2020;10(8):1119. doi:10.3390/biom10081119
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532-53. doi:10.1159/000485089
Milton N. Homocysteine inhibits hydrogen peroxide breakdown by catalase. The open enzyme inhibition journal. 2008;1(1):34-41. doi:10.2174/1874940200801010034
Long Y. Nie J. Homocysteine in renal injury. Kidney diseases (Basel). 2016;2(2):80-7. doi:10.1159/000444900
Pereira B, Vale G, Ceron C. The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(2):121-31. doi:10.1007/s00210-021-02186-z M
Cheng M, Wu T, Huang L, Tain Y. Renoprotective effects of melatonin in young spontaneously hypertensive rats with L-NAME. Pediatr Neonatol. 2014;55(3):189-95. doi:10.1016/j.pedneo.2013.09.005
Gilinsky M, Polityko Y, Markel A, Latysheva T, Samson A, Polis B, et al. Norvaline reduces blood pressure and induces diuresis in rats with inherited stress-induced arterial hypertension. Biomed Res Int. 2020;2020:4935386. doi:10.1155/2020/4935386
Oliveira F, Assreuy J, Sordi R. The role of nitric oxide in sepsisassociated kidney injury. Biosci Rep. 2022;42(7):BSR20220093. doi:10.1042/BSR20220093
Ishimoto Y, Tanaka T, Yoshida Y, Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clin Exp Pharmacol Physiol. 2018;45(11):1097-105. doi:10.1111/1440-1681.13018
Chen C, Yang W, Hsiao Y, Huang S, Huang Y. High homocysteine, low vitamin B-6, and increased oxidative stress are independently associated with the risk of chronic kidney disease. Nutrition. 2016;32(2):236-41. doi:10.1016/j.nut.2015.08.016
