METHYLSENSITIVE COMET ASSAY: ANALYSIS OF DNA METHYLATION LEVEL IN GLIOBLASTOMA T98G CELL LINE
DOI 10.17721/1728.2748.2023.92.5-9
Keywords:
Glioblastoma cancer cells, human peripheral blood lymphocytes, DNA methylation, comet assayAbstract
Methylsensitive comet electrophoresis is based on the assessment of the level of DNA migration from individual lysed cells after treatment with methylsensitive restriction enzymes. Using model human lymphocytes, the optimal combination of restriction intensity and electrophoresis time was selected and a new approach for evaluating the relative level of DNA methylation was proposed. It was established that in the cells of the T98G culture, which are actively proliferating, the level of methylation is higher than in cells arrested at the G1 phase of the cell cycle. At the same time, the level of DNA methylation in G1 cells of the T98G line is significantly lower compared to lymphocytes.
References
Latha N. R. Gene expression signatures: A tool for analysis of breast cancer prognosis and therapy / N. R. Latha, A. Rajan, R. Nadhan [et al.] // Crit Rev Oncol Hematol. – 2020. – V. 151. – e102964. doi: 10.1016/ j.critrevonc.2020.102964
Shi D. L. RBM24 in the Post-Transcriptional Regulation of Cancer Progression: Anti-Tumor or Pro-Tumor Activity? / D.L. Shi // Cancers (Basel). – 2022. – V. 14, № 7. – е1843. doi: 10.3390/cancers14071843.
Constâncio V. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types / V. Constâncio, S. P. Nunes, R. Henrique [et al.] // Cells. – 2020. – V. 9, № 3. – e624. doi: 10.3390/cells9030624.
Müller D. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer / D. Müller, B. Győrffy // Biochim Biophys Acta Rev Cancer. – 2022. – V. 1877, № 3. – e188722. doi: 10.1016/j.bbcan.2022.188722.
Nishiyama A. Navigating the DNA methylation landscape of cancer / A. Nishiyama, M. Nakanishi //Trends Genet. – 2021. – V. 37, № 11. – Р. 1012–1027. doi: 10.1016/j.tig.2021.05.002.
Martisova A. DNA Methylation in Solid Tumors: Functions and Methods of Detection / A. Martisova, J. Holcakova, N. Izadi [et al.] // Int J Mol Sci. – 2021. – V. 22, № 8. – е4247. doi: 10.3390/ijms22084247.
Gouil Q. Latest techniques to study DNA methylation / Q. Gouil, A. Keniry // Essays Biochem. – 2019. – V. 63, № 6. – Р. 639–648. doi: 10.1042/EBC20190027.
Wentzel J. Assessing the DNA methylation status of single cells with the comet assay / J. Wentzel, C. Gouws, C. Huysamen [et al.] // Anal. Biochem. – 2010. – V. 400, № 2. – P. 190–194. doi: 10.1016/ j.ab.2010.02.008.
Perotti A. Methy-sens Comet assay and DNMTs transcriptional analysis as a combined approach in epigenotoxicology / A. Perotti, V. Rossi, A. Mutti [et al.] // Biomarkers. – 2015. – V. 20, № 1. – P. 64–70. doi: 10.3109/1354750X.2014.992813.
Cook P. R. Characterization of nuclear structures containing superhelical DNA / P. R. Cook, I. A. Brazell, E. Jost // J Cell Sci. – 1976. – V. 22, № 2. – Р. 303–324. doi: 10.1242/jcs.22.2.303
Karimi M. Using LUMA: a Luminometric-based assay for global DNA-methylation / M. Karimi, S. Johansson, T. J. Ekström // Epigenetics. – 2006. – V. 1, № 1. – P. 45–48. doi: 10.4161/epi.1.1.2587.
Lewies A. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells / A. Lewies, E. Van Dyk, J. F. Wentzel [et al.] // Front Genet. – 2015. – V. 5. – e215. doi: 10.3389/ fgene.2014.00215.
Townsend T. A. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status / T. A. Townsend, M. C. Parrish, B. P. Engelward [et al.] // Environ Mol Mutagen. – 2017. – V. 58, № 7. – Р. 508–521. doi: 10.1002/ em.22101.
DNA loop domain organization as revealed by single-cell gel electrophoresis / K. Afanasieva, M. Chopei, M. Zazhytska [et al.] // Biochim Biophys Acta. – 2013. – V. 1833, № 12. – P. 3237–3244. doi: 10.1016/ j.bbamcr.2013.09.021.
Collins A. The comet assay as a tool for human biomonitoring studies: the ComNet project / A. Collins, G. Koppen, V. Valdiglesias [et al.] // Mutat Res Rev Mutat Res. – 2014. – V. 759. – P. 27–39. doi: 10.1016/ j.mrrev.2013.10.001
Кurinnyi D. A. The impact of astaxanthin on the level of dna methylation in irradiated in vitro human lymphocytes / D. A. Кurinnyi, O. M. Demchenko, M. G. Romanenko [et al.] // Problems of radiation medicine and radiobiology. – 2018. – V. 23. – P. 235–245. doi: 10.33145/ 2304-8336-2018-23-235-245.
Afanasieva K. DNA loop domain organization in nucleoids from cells of different types / K. Afanasieva, M. Chopei, A. Lozovik [et al.] // Biochem Biophys Res Commun. – 2017. – V. 483, № 1. – P. 142–146. doi: 10.1016/j.bbrc.2016.12.177.
Stein G. H. T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro / G. H. Stein // J Cell Physiol. – 1979. – V.99, № 1. – P. 43–54. doi: 10.1002/jcp.1040990107.
Kiseleva L. N. Сharacteristics of A172 AND T98G cell lines / L. N. Kiseleva, A. V. Kartashev, N. L. Vartanyan [et al.] // Cell Tiss Biol. – 2016. – V. 10. – P. 341–348. doi: 10.1134/S1990519X16050072
Bayin N. S. Glioblastoma stem cells: Molecular characteristics and therapeutic implications / N. S. Bayin, A. S. Modrek, D. G. Placantonakis // World J Stem Cells. – 2014. – V. 6, № 2 – P. 230–238. doi: 10.4252/ wjsc.v6.i2.230.
Haga Y. The effect of ST2 gene product on anchorage-independent growth of a glioblastoma cell line, T98G / Y. Haga, K. Yanagisawa, H. Ohto- Ozaki // Eur J Biochem. – 2003. – V. 270, № 1. – P. 163–170. doi: 10.1046/ j.1432-1033.2003.03377.x.
