EXPRESSION OF PTGS2 AND NOS2 GENES IN THE SYNOVIAL FLUID OF PATIENTS WITH OSTEOARTHRITIS AFTER SARS-CoV2 INFECTION
DOI: 10.17721/1728.2748.2023.94.10-14
Keywords:
SARS-CoV-2, остеоартрит, синовіальна рідина, запалення, експресія генів NOS2, PTGS2Abstract
Background. The emergence of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has created a serious global threat to the health of people in various countries. The 2019 coronavirus disease (Coronavirus disease 2019, COVID-19) has caused the development of many complications in the population of most countries of the world. Currently, many people have felt the unpleasant consequences of the coronavirus infection. Among them, a special group consists of patients with chronic diseases, particularly osteoarthritis. The development of inflammation and intensification of free radical processes is a leading link in the pathogenesis of osteoarthritis. Inflammatory and degenerative processes that develop in osteoarthritis cause modification of the molecular and cellular composition of the synovial fluid.
Methods. The aim of the work was to determine the expression of (Prostaglandin-endoperoxide synthase 2) and NOS2 (Nitric Oxide Synthase 2) genes in synovial fluid cells of patients with osteoarthritis after SARS-CoV2 infection. All study participants were divided into two groups. The first group (n = 22) is patients with osteoarthritis of the knee joints II-III degree. The second group (n = 14) is patients with osteoarthritis of the knee joints II–III degree, who suffered a mild and moderate form of COVID-19 6–9 months ago. Expression of PTGS2 and NOS2 genes was determined in nuclear cells of synovial fluid. RNA was obtained by the Chomczynski method. Synthesis of cDNA and quantitative polymerase chain reaction in real time (Real-time PCR, qPCR) using the commercial kit "Thermo Scientific Verso SYBR Green 1-Step qRT-PCR ROX Mix" ("Thermo Scientific, Lithuania). Processing of research results was carried out using generally accepted methods of variational statistics.
Results. In patients with osteoarthritis of the knee joints after SARS-CoV2 infection, the expression of PTGS2 and NOS2 genes increases in nuclear cells of the synovial fluid compared to patients diagnosed with osteoarthritis.
Conclusions. Our results indicate that patients with osteoarthritis may develop a more severe course of synovial inflammation after infection with COVID-19.
References
Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., Esmaeilzadeh, A. (2021). COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med., 23(2):e3303. doi: 10.1002/jgm.3303. Epub 2021 Jan 6.
Gupta, K., Kaur, G., Pathak, T., Banerjee, I. (2022). Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene., 844:146790. doi: 10.1016/j.gene.2022.146790. Epub 2022 Aug 17.
World Health Organization [Електронний ресурс]. – https://covid19.who.int/
Yüce, M., Filiztekin, E., Özkaya, K. G. (2021). COVID-19 diagnosis -A review of current methods. Biosens Bioelectron, 172:112752. doi: 10.1016/j.bios.2020.112752. Epub 2020 Oct 24.
Campos, M., C., Nery, T., Starke, A., C. (2022). de Bem Alves AC, Speck AE, S Aguiar A. Post-viral fatigue in COVID-19: A review of symptom assessment methods, mental, cognitive, and physical impairment. Neurosci Biobehav Rev., 142:104902. doi: 10.1016/j.neubiorev.2022.104902. Epub 2022 Oct 3.
Farisogullari, B., Pinto, A., S., Machado, P., M. (2022). COVID-19-associated arthritis: an emerging new entity? RMD Open., 8(2):e002026. doi: 10.1136/rmdopen-2021-002026.
Ono, K., Kishimoto, M., Shimasaki, T., Uchida, H., Kurai, D., Deshpande, G., A., Komagata, Y., Kaname, S. (2020). Reactive arthritis after COVID-19 infection. RMD Open. , 6(2):e001350. doi: 10.1136/rmdopen-2020-001350.
McConnell, S., Kolopack, P., Davis, A., M. (2001). The Western Ontario and McMaster universities osteoarthritis index (WOMAC): a review of its utility and measurement properties. Arthritis Care Res., 45(5):453–61. doi: 10.1002/1529-0131(200110)45:5<453::aid-art365>3.0.co;2-w.
Chomczynski, P., Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal. Biochem., 162(1):156-159. doi: 10.1006/abio.1987.9999
Livak. K., Schmittgen. T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods, 25(4):402-408. doi: 10.1006/meth.2001.1262
Oliviero, F., Mandell, B., F. (2023). Synovial fluid analysis: Relevance for daily clinical practice. Best Pract Res Clin Rheumatol., 8:101848. doi: 10.1016/j.berh.2023.101848. Online ahead of print.
Gupta, R., C., Lall, R., Srivastava, A., Sinha, A. (2019). Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet Sci. , 25;6:192. doi: 10.3389/fvets.2019.00192. eCollection 2019.
Liu, D., Xiao, W., F., Li, Y., S. (2023). The Diagnostic and Prognostic Value of Synovial Fluid Analysis in Joint Diseases. Methods Mol Biol, ;2695:295-308. doi: 10.1007/978-1-0716-3346-5_20.
Lineham, B., Altaie, A., Harwood, P., McGonagle, D., Pandit, H., Jones, E. (2022). A systematic review on the potential value of synovial fluid biomarkers to predict clinical outcomes in cartilage repair treatments. Osteoarthritis Cartilage., 30(8):1035-1049. doi: 10.1016/j.joca.2022.05.007. Epub 2022 May 23.
Martínez Girón, R., Martínez Torre, S. (2020). Synovial fluid cytodiagnosis. Rev Esp Patol., 53(2):100-112. doi: 10.1016/j.patol.2019.01.004. Epub 2019 Mar 15.
Su, W., Liu. G., Mohajer, B., Wang, J., Shen. A., Zhang, W., Liu, B., Guermazi, A., Gao, P., Cao, X., Demehri, S., Wan, M. (2022). Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. Elife., 26;11:e79773. doi: 10.7554/eLife.79773.
Ferrer, M., D., Busquets-Cortés, C., Capó, X., Tejada, S., Tur, J., A., Pons, A., Sureda, A. (2019). Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases. Curr Med Chem., 26(18):3225-3241. doi: 10.2174/0929867325666180514112124.
Ahmad, N., Ansari, M., Y., Haqqi, T., M. (2020). Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol., 235(10):6366-6376. doi: 10.1002/jcp.29607.
Ostojic, M., Zevrnja, A., Vukojevic, K., Soljic, V. (2021). Immunofluorescence Analysis of NF-kB and iNOS Expression in Different Cell Populations during Early and Advanced Knee Osteoarthritis. Int J Mol Sci., 16;22(12):6461. doi: 10.3390/ijms22126461.
Ferrer, M., Busquets-Cortés, C., Capó, X., Tejada, S., Tur, J., A., Pons, A., Sureda, A. (2019). Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases. Curr Med Chem., 26(18):3225-3241. doi: 10.2174/0929867325666180514112124.
Nakata, K., Hanai, T., Take, Y., Osada, T., Tsuchiya, T., Shima, D., Fujimoto, Y. (2018). Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthritis Cartilage., 26(10):1263-1273. doi: 10.1016/j.joca.2018.05.021. Epub 2018 Jun 8.
Borodin, S., Ostapchenko, D., Korotkyi, O., Dvorshchenko, K. (2022). Indicators of the oxidant-antioxidant system in the synovial fluid of patients with osteoarthritis after SARS-CoV2 infection. Bulletin of problems biology and medicine, Is. 4 (167):125-130.
Бородін, С., Короткий, О., Юет, А., Дворщенко, К. (2022). Перекисне окиснення ліпідів у синовіальній рідині хворих на остеоартрит після SARS-CoV2-інфекції. Вісник Київського національного університету імені Тараса Шевченка серія «Біологія», 3(90):10-14.
Бородін, С., Дворщенко, К. (2023). Окисна модифікація білків у синовіальній рідині хворих на остеоартрит після SARS-CoV2-інфекції. Вісник Київського національного університету імені Тараса Шевченка серія «Біологія», 93(2): 12-16.
