DETECTION OF P16/KI-67 MARKERS IN THE DETECTION OF CERVICAL INTRAEPITHELIAL NEOPLASIA
DOI: 10.17721/1728.2748.2023.95.24-31
Keywords:
Cervical dysplasia, intraepithelial cancer, immunocytochemistry, Pap test, p16/Ki-67, Bethesda classification, human papillomavirus.Abstract
B a c k g r o u n d . In recent years, Ukraine has experienced an unfavorable epidemiological situation concerning sexually transmitted diseases. One rapidly spreading infection is genital human papillomavirus (HPV). Convincing research has identified human papillomavirus (HPV) as a significant factor in the development of malignant transformations in the cervix. The study of the molecular pathogenesis associated with HPV-related neoplasms has led to the discovery of biomarkers aiding in the diagnosis of High-grade Squamous Intraepithelial Lesion (HSIL) of the cervix. Including the biomarkers p16/Ki-67 in the investigation enhances sensitivity in detecting HSIL in women. Additionally, it is pertinent to further analyze the effectiveness of using an additional semi-quantitative scale to assess the results of immunocytochemical detection of p16/Ki-67.
M e t h o d s . The research was conducted on biological material from cervical smears using liquid-based cytology. Techniques included Papanicolaou staining, HPV detection, and immunocytochemical staining against p16/Ki-67. The sample comprised 90 women divided into three age groups, each categorized based on criteria such as HPV presence/absence, Bethesda classification of dysplasia, and negative/positive p16/Ki-67 results. Intensity of staining was further scored on a scale in the corresponding location of positive reactions in the nucleus or cytoplasm.
R e s u l t s . The study revealed that immunocytochemical markers p16 and Ki-67 identified women with intraepithelial lesions, especially in cases with positive HPV results and no dysplastic changes in the Pap test. The intensity of immunocytochemical staining for p16 and Ki-67 varied directly with the detected degree of dysplasia.
C o n c l u s i o n s . A direct correlation was observed between the severity of dysplasia established by Bethesda classification and the intensity of immunocytochemical staining for p16 and Ki-67. These findings provide an opportunity for further exploration of staining intensity in the presence of immunocytochemical markers p16 and Ki-67 for their potential use in the comprehensive interpretation of Pap test results and the precise identification of dysplasia in ambiguous diagnostic samples.
References
Cuschieri K, Wentzensen N. (2008). Human papillomavirus mRNA and p16 detection as biomarkers for the improved diagnosis of cervical neoplasia. Cancer Epidemiol Biomarkers Prev. 17(10), 2536-2545. https://doi.org/10.1158/1055-9965.epi-08-0306
Gupta, S. M., Warke, H., Chaudhari, H., Mavani, P., Katke, R. D., Kerkar, S. C., & Mania‐Pramanik, J. (2022). Human Papillomavirus E6/E7 oncogene transcripts as biomarkers for the early detection of cervical cancer. Journal of Medical Virology, 94(7), 3368-3375. https://doi.org/10.1002/jmv.27700
Celewicz, A., Celewicz, M., Wężowska, M., Chudecka-Głaz, A., Menkiszak, J., & Urasińska, E. (2018). Clinical efficacy of p16/Ki-67 dual-stained cervical cytology in secondary prevention of cervical cancer. Polish Journal of Pathology, 69(1), 42-47. https://doi.org/10.5114/pjp.2018.75335
Dovnik, A., & Repše Fokter, A. (2023). The Role of p16/Ki67 Dual Staining in Cervical Cancer Screening. Current Issues in Molecular Biology, 45(10), 8476-8491. https://doi.org/10.3390/cimb45100534
El‐Zein, M., Gotlieb, W., Gilbert, L., Hemmings, R., Behr, M. A., Franco, E. L., & STAIN‐IT Study Group. (2021). Dual staining for p16/Ki‐67 to detect high‐grade cervical lesions: Results from the Screening Triage Ascertaining Intraepithelial Neoplasia by Immunostain Testing study. International Journal of Cancer, 148(2), 492-501. https://doi.org/10.1002/ijc.33250
Frappart L, Fontaniere B, Lucas E, Sankaranarayanan R, (2004) Histopathology and Cytopathology of the Uterine Cervix - Digital Atlas, IARC CancerBase No. 8, WHO, https://screening.iarc.fr/atlascyto.php
Han, C., Zhao, F., Wan, C., He, Y., & Chen, Y. (2020). Associations between the expression of SCCA, MTA1, P16, Ki 67 and the infection of high risk HPV in cervical lesions. Oncology Letters, 20(1), 884-892. https://doi.org/10.3892/ol.2020.11634
Hoda, R. S., Finer, E. B., Arpin III, R. N., Rosenbaum, M., & Pitman, M. B. (2019). Risk of malignancy in the categories of the Papanicolaou Society of Cytopathology system for reporting pancreaticobiliary cytology. Journal of the American Society of Cytopathology, 8(3), 120-127.https://doi.org/10.1016/j.jasc.2019.01.002
I.M. Franks and N. M. Teich (1997). Intrduction to the Cellular and molecular biology of cancer 3rd. Oxford University Press, 230.
Ikenberg H, Bergeron C, Schmidt D, Griesser H, Alameda F, Angeloni C, Bogers J, Dachez R, Denton K, Hariri J, Keller T, von Knebel Doeberitz M, Neumann HH, Puig-Tintore LM, Sideri M, Rehm S, Ridder R, PALMS Study Group (2013). Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst. 105, 1550-7. https://doi.org/10.1093/jnci/djt235
Jeon S., Allen-Hoffmann B.L., Lambert P.F. (1995). Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Viro 69(5). https://doi.org/10.1128/jvi.69.5.2989-2997.1995
Karin M. (2006). NF-κB and cancer: mechanisms and targets. Mol Carcinog, 355–361. https://doi.org/10.1128/jvi.69.5.2989-2997.1995
Kim WY, Sharpless NE (2006). The regulation of INK4/ARF in cancer and aging. Cell. 127(2), 265-275. https://doi.org/10.1016/j.cell.2006.10.003
Lewitowicz, P., Nasierowska-Guttmejer, A., Rokita, W., Adamczyk-Gruszka, O., Gluszek, S., Chrapek, M.& Misiek, M. (2020). HPV genotyping and p16/Ki-67 test significantly improve detection rate of high-grade cervical squamous intraepithelial lesion. Archives of Medical Science, 16(1), 87-93. https://doi.org/10.5114/aoms.2018.80697
Li, Y., Fu, Y., Cheng, B., Xie, X., & Wang, X. (2022). A comparative study on the accuracy and efficacy between dalton and CINtec® PLUS p16/Ki-67 dual stain in triaging HPV-positive women. Frontiers in Oncology, 11, 815213. https://doi.org/10.3389/fonc.2021.815213
Maurya, R., Pandey, N. N., & Dutta, M. K. (2023). VisionCervix: Papanicolaou cervical smears classification using novel CNN-Vision ensemble approach. Biomedical Signal Processing and Control, 79, https://doi.org/10.1016/j.bspc.2022.104156
Martinez-Mas, J., Bueno-Crespo, A., Martinez-Espana, R., Remezal-Solano, M., Ortiz-Gonzalez, A., Ortiz-Reina, S., & Martinez-Cendan, J. P. (2020). Classifying Papanicolaou cervical smears through a cell merger approach by deep learning technique. Expert Systems with Applications, 160, https://doi.org/10.1016/j.eswa.2020.113707
Martins, D., Schmitt, F., Frattini, M., Fulciniti, F. (2022). Molecular Pathology of Endometrial Carcinoma on LBC Samples and Cell Blocks. In: Hirai, Y., Fulciniti, F. (eds) The Yokohama System for Reporting Endometrial Cytology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5011-6_16
Nishikawa, T., Suzuki, H., Takeuchi, M., Tatsumi, S., Tachibana, Y., Ohbayashi, C. & Norimatsu, Y. (2022). A study on preserving endometrial glandular architecture during preparation using BD SurePath™ liquid‐based cytology reagents: Cellular fixation with preservative fluid requires at least 18 h. Cytopathology, 33(3), 357-361. https://doi.org/10.1111/cyt.13087
Pennant S. (2008). Endometrial atypical hyperplasia and subsequent diagnosis of endometrial cancer. Obstet Gynaecol, 28 (6), 632-633. https://doi.org/10.1080/01443610802355817
Porras C., Rodriguez A.C., et al. (2009). Human papillomavirus types by age in cervical cancer precursors: predominance of human papillomavirus 16 in young women. Cancer Epidemiol. Biomarkers Prev, 850-863. https://doi.org/10.1158/1055-9965.epi-08-0951
Raju, K. Evolution of Pap Stain. Biomed Res Ther 3, 6 (2016). https://doi.org/10.7603/s40730-016-0006-8
Roelens J, Reuschenbach M, von Knebel Doeberitz M, et al. (2012) p16INK4a immunocytochemistry versus human papillomavirus testing for triage of women with minor cytologic abnormalities: a systematic review and meta-analysis. Cancer Cytopathol. 120(5), 294–307. https://doi.org/10.1002/cncy.21205
Sarma, U., Sarma, P., & Rabha, D. (2023). Staining Intensity of P16INK4a and Ki-67 Determine the Grade of Cervical Lesion: An Experience from Single Tertiary Care Centre. Asian Pacific Journal of Cancer Biology, 8(4), 327-333. https://doi.org/10.31557/apjcb.2023.8.4.327-333
Schiffman M, Wentzensen N, Wacholder S, Kinney W, Gage JC, Castle PE (2011). Human papillo-mavirus testing in prevention of cervical cancer. Cancer Inst, 368-83. https://doi.org/10.1093/jnci/djq562
Schmidt D, Bergeron C, Denton KJ, et al. (2011) p16/ki-67 dual-stain cytology in the triage of ASC-US and LSIL papanicolaou cytology: results from the European equivocal or mildly abnormal Papanicolaou cytology study. Cancer Cytopathol.119(3),158– 166. https://doi.org/10.1002/cncy.20140
Silva, D. C., Goncalves, A. K., Cobucci, R. N., Mendonca, R. C., Lima, P. H., & Júnior, G. C. (2017). Immunohistochemical expression of p16, Ki-67 and p53 in cervical lesions–A systematic review. Pathology-Research and Practice, 213(7), 723-729. https://doi.org/10.1016/j.prp.2017.03.003
Smith J.S., Herrero R., Bosetti C., et al. (2002). Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer, J Natl Cancer Inst.1604-1614. https://doi.org/10.1093/jnci/94.21.1604
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.71, 209–49. https://doi.org/10.3322/caac.21660
Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G. (2008). Molecular characteristics of immunogenic cancer cell death. Cell Death Differ, 15(1) 3–12. https://doi.org/10.1038/sj.cdd.4402269
Walboomers JMM, et al. (1999). Human Papillomavirus is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pattol, 189. https://doi.org/10.1002/(sici)1096-9896(199909)189:1%3C12::aid-path431%3E3.0.co;2-f
White, C., Bakhiet, S., Bates, M., Keegan, H., Pilkington, L., Ruttle, C. & Martin, C. M. (2016). Triage of LSIL/ASC‐US with p16/Ki‐67 dual staining and human papillomavirus testing: a 2‐year prospective study. Cytopathology, 27(4), 269-276. https://doi.org/10.1111/cyt.12317
Wentzensen N, von Knebel Doeberitz M. (2007). Biomarkers in cervical cancer screening. Dis Markers. 23(4), 315-330. https://doi.org/10.1155/2007/678793
Wentzensen, N., Clarke, M. A., Bremer, R., Poitras, N., Tokugawa, D., Goldhoff, P. E. & Lorey, T. S. (2019). Clinical evaluation of human papillomavirus screening with p16/Ki-67 dual stain triage in a large organized cervical cancer screening program. JAMA internal medicine, 179(7), 881-888. https://doi.org/10.1001/jamainternmed.2019.0306
Wright Jr, T. C., Stoler, M. H., Ranger‐Moore, J., Fang, Q., Volkir, P., Safaeian, M., & Ridder, R. (2022). Clinical validation of p16/Ki‐67 dual‐stained cytology triage of HPV‐positive women: Results from the IMPACT trial. International journal of cancer, 150(3), 461-471. https://doi.org/10.1002/ijc.33812
Вовк, І. Б., Горбань, Н. Е., Борисюк, О. Ю. (2016). Гіперплазія ендометрію (клінічна лекція). Київ: ДУ «Інститут педіатрії, акушерства та гінекології НАМН України». Київ. Жіноче здоровья 7 (63), 177-181. http://nbuv.gov.ua/UJRN/Zdzh_2016_5_3.
Федоренко З.П. та інші. (2023). Бюлетень національного канцер-реєстру України № 24, 53. https:// www.ncru.inf.ua/publications/BULL_24/PDF/66-shm.pdf
