COMPARATIVE ASSESSMENT OF THE IMPACT OF INTERFERONOGENIC PREPARATIONLARIFAN ON MONOCYTES FROM AGED C57BL/6 AND BALB/C MICE IN VITRO

DOI: 10.17721/1728.2748.2024.98.5-10

Authors

Keywords:

bacteriophage-derived dsRNA, blood monocytes, phagocytic activity, reactive oxygen species, CD80, CD206

Abstract

Background. Blood monocytes play a crucial role in immunity as effector cells of innate immunity. However, they can also promote hyperinflammation, as was described in COVID-19. Many viral infections trigger hyperinflammation by inhibiting type I interferon synthesis, necessitating search of interferon-based or interferonogenic treatments like Larifan – bacteriophagederived dsRNA with interferonogenic and immunomodulatory properties. Global statistics indicate that viral infections, including SARS-CoV-2, as well as hyperinflammation occur more frequently in males, especially in the older age group, and significantly depends on genetically determined profile of immune reactivity. The aim of this study was a comparative assessment of the impact of Larifan on the metabolic profile of peripheral blood monocytes from aged male C57BL/6 and BALB/c mice in vitro.

Methods. Male aged C57BL/6 and BALB/c mice were used in this study. Blood samples were collected from facial vein and treated with Larifan in vitro. Phagocytic activity, ROS production, and expression of phenotypic markers were assessed by flow cytometry. Only live monocytes were gated and included in the analysis. Data are presented as median and interquartile range (IQR). Statistical differences were calculated using Kruskal–Wallis test, with significance set at p < 0.05.

Results. BALB/c mice showed a lower baseline phagocytic index than C57Bl/6, but phagocytosis percentages were comparable. Treatment with Larifan reduced the phagocytosis percentage in both strains, yet the phagocytic index rose in BALB/c mice after dsRNA exposure. ROS production was higher in C57Bl/6 mice, with Larifan reducing ROS levels significantly in both strains. CD80 baseline expression levels were higher in BALB/c, and dsRNA increased CD80-positive cells as well as decreased expression level of CD80 in BALB/c mice only. CD206 expression was lower in BALB/c but unaffected by Larifan, while dsRNA reduced both number of CD206-positive cells and CD206 levels in C57Bl/6 mice.

Conclusions. The metabolic profile of monocytes differs between Th1-dominant C57Bl/6 and Th2-biased BALB/c mice, with higher baseline indicators in C57Bl/6 mice. Larifan treatment exerts anti-inflammatory effects by reducing ROS synthesis in both strains, with BALB/c mice also displaying increased phagocytosis and reduced antigen-presenting capability

References

Alves, J. V., da Costa, R. M., Pereira, C. A., Fedoce, A. G., Silva, C. A. A., Carneiro, F. S., Lobato, N. S., & Tostes, R. C. (2020). Supraphysiological Levels of Testosterone Induce Vascular Dysfunction via Activation of the NLRP3 Inflammasome. Frontiers in immunology, 11, 1647. https://doi.org/10.3389/fimmu.2020.01647

Austermann, J., Roth, J., & Barczyk-Kahlert, K. (2022). The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells, 11(12), 1979. https://doi.org/10.3390/cells11121979

Belge, K. U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., Espevik, T., & Ziegler-Heitbrock, L. (2002). The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. Journal of immunology (Baltimore, Md.: 1950), 168(7), 3536–3542. https://doi.org/10.4049/jimmunol.168.7.3536

Bleul, T., Zhuang, X., Hildebrand, A., Lange, C., Böhringer, D., Schlunck, G., Reinhard, T., & Lapp, T. (2021). Different Innate Immune Responses in BALB/c and C57BL/6 Strains following Corneal Transplantation. Journal of innate immunity, 13(1), 49–59. https://doi.org/10.1159/000509716

Breda, J., Banerjee, A., Jayachandran, R., Pieters, J., & Zavolan, M. (2022). A novel approach to single-cell analysis reveals intrinsic differences in immune marker expression in unstimulated BALB/c and C57BL/6 macrophages. FEBS letters, 596(20), 2630–2643. https://doi.org/10.1002/1873-3468.14478

Chan, Y., & Walmsley, R. P. (1997). Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Physical therapy, 77(12), 1755–1762. https://doi.org/10.1093/ptj/77.12.1755

Cisneros, B., García-Aguirre, I., Unzueta, J., Arrieta-Cruz, I., González-Morales, O., Domínguez-Larrieta, J. M., Tamez-González, A., Leyva-Gómez, G., & Magaña, J. J. (2022). Immune system modulation in aging: Molecular mechanisms and therapeutic targets. Frontiers in immunology, 13, 1059173. https://doi.org/10.3389/fimmu.2022.1059173

Costantini, A., Viola, N., Berretta, A., Galeazzi, R., Matacchione, G., Sabbatinelli, J., Storci, G., De Matteis, S., Butini, L., Rippo, M. R., Procopio, A. D., Caraceni, D., Antonicelli, R., Olivieri, F., & Bonafè, M. (2018). Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging, 10(6), 1268–1280. https://doi.org/10.18632/aging.101465

Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K., & Dockrell, D. H. (2010). The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PloS One, 5(1), e8668. https://doi.org/10.1371/journal.pone.0008668

Dunn, S. E., Perry, W. A., & Klein, S. L. (2024). Mechanisms and consequences of sex differences in immune responses. Nature reviews. Nephrology, 20(1), 37–55. https://doi.org/10.1038/s41581-023-00787-w

Fulop, T., Larbi, A., Dupuis, G., Le Page, A., Frost, E. H., Cohen, A. A., Witkowski, J. M., & Franceschi, C. (2018). Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes?. Frontiers in immunology, 8, 1960. https://doi.org/10.3389/fimmu.2017.01960

García-Sastre A. (2017). Ten Strategies of Interferon Evasion by Viruses. Cell host & microbe, 22(2), 176–184. https://doi.org/10.1016/j.chom.2017.07.012

Hume D. A. (2015). The Many Alternative Faces of Macrophage Activation. Frontiers in immunology, 6, 370. https://doi.org/10.3389/fimmu.2015.00370

Hurmach, Y., Rudyk, M., Svyatetska, V., Senchylo, N., Skachkova, O., Pjanova, D., Vaivode, K., Skivka, L. (2018). The effect of intranasally administered TLR3 agonist larifan on metabolic profile of microglial cells in rat with C6 glioma. Ukrainian Biochemical Journal, 90(6), 110-119. https://doi.org/10.15407/ubj90.06.110

Jacobsen, H., & Klein, S. L. (2021). Sex Differences in Immunity to Viral Infections. Frontiers in immunology, 12, 720952. https://doi.org/10.3389/fimmu.2021.720952

Kapellos, T. S., Bonaguro, L., Gemünd, I., Reusch, N., Saglam, A., Hinkley, E. R., & Schultze, J. L. (2019). Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Frontiers in immunology, 10, 2035. https://doi.org/10.3389/fimmu.2019.02035

Ma, X., Zhou, Y., Qiao, B., Jiang, S., Shen, Q., Han, Y., Liu, A., Chen, X., Wei, L., Zhou, L., & Zhao, J. (2020). Androgen aggravates liver fibrosis by activation of NLRP3 inflammasome in CCl4-induced liver injury mouse model. American journal of physiology. Endocrinology and metabolism, 318(5), E817–E829. https://doi.org/10.1152/ajpendo.00427.2019

Martínez de Toda, I., González-Sánchez, M., Díaz-Del Cerro, E., Valera, G., Carracedo, J., & Guerra-Pérez, N. (2023). Sex differences in markers of oxidation and inflammation. Implications for ageing. Mechanisms of ageing and development, 211, 111797. https://doi.org/10.1016/j.mad.2023.111797

Martínez-García, M. Á., Ojeda-Ojeda, M., Rodríguez-Martín, E., Insenser, M., Moncayo, S., Álvarez-Blasco, F., Luque-Ramírez, M., & Escobar-Morreale, H. F. (2020). TLR2 and TLR4 Surface and Gene Expression in White Blood Cells after Fasting and Oral Glucose, Lipid and Protein Challenges: Influence of Obesity and Sex Hormones. Biomolecules, 10(1), 111. https://doi.org/10.3390/biom10010111

Meier, A., Chang, J. J., Chan, E. S., Pollard, R. B., Sidhu, H. K., Kulkarni, S., Wen, T. F., Lindsay, R. J., Orellana, L., Mildvan, D., Bazner, S., Streeck, H., Alter, G., Lifson, J. D., Carrington, M., Bosch, R. J., Robbins, G. K., & Altfeld, M. (2009). Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nature medicine, 15(8), 955–959. https://doi.org/10.1038/nm.2004

Mesic, A., Jackson, E. K., Lalika, M., Koelle, D. M., & Patel, R. C. (2022). Interferon-based agents for current and future viral respiratory infections: A scoping literature review of human studies. PLOS global public health, 2(4), e0000231. https://doi.org/10.1371/journal.pgph.0000231

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18

Pjanova, D., Hurmach, Y., Rudyk, M., Khranovska, N., Skachkova, O., Verhovcova, I., & Skivka, L. (2021). Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 75(5), 343-349. https://doi.org/10.2478/prolas-2021-0050

Resende, M. G., Fux, B., Caetano, B. C., Mendes, E. A., Silva, N. M., Ferreira, A. M., Melo, M. N., Vitor, R. W., & Gazzinelli, R. T. (2008). The role of MHC haplotypes H2d/H2b in mouse resistance/susceptibility to cyst formation is influenced by the lineage of infective Toxoplasma gondii strain. Anais da Academia Brasileira de Ciencias, 80(1), 85–99. https://doi.org/10.1590/s0001-37652008000100005

Schlitt, A., Heine, G. H., Blankenberg, S., Espinola-Klein, C., Dopheide, J. F., Bickel, C., Lackner, K. J., Iz, M., Meyer, J., Darius, H., & Rupprecht, H. J. (2004). CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thrombosis and haemostasis, 92(2), 419–424. https://doi.org/10.1160/TH04-02-0095

Smith-Garvin, J. E., Koretzky, G. A., & Jordan, M. S. (2009). T cell activation. Annual review of immunology, 27, 591–619. https://doi.org/10.1146/annurev.immunol.021908.132706

Souyris, M., Cenac, C., Azar, P., Daviaud, D., Canivet, A., Grunenwald, S., Pienkowski, C., Chaumeil, J., Mejía, J. E., & Guéry, J. C. (2018). TLR7 escapes X chromosome inactivation in immune cells. Science immunology, 3(19), eaap8855. https://doi.org/10.1126/sciimmunol.aap8855

Stansfield, B. K., & Ingram, D. A. (2015). Clinical significance of monocyte heterogeneity. Clinical and translational medicine, 4, 5. https://doi.org/10.1186/s40169-014-0040-3

Tak, T., Drylewicz, J., Conemans, L., de Boer, R. J., Koenderman, L., Borghans, J. A. M., & Tesselaar, K. (2017). Circulatory and maturation kinetics of human monocyte subsets in vivo. Blood, 130(12), 1474–1477. https://doi.org/10.1182/blood-2017-03-771261

Vaivode, K., Verhovcova, I., Skrastina, D., Petrovska, R., Kreismane, M., Lapse, D., Kalnina, Z., Salmina, K., Rubene, D., & Pjanova, D. (2022). Bacteriophage-Derived Double-Stranded RNA Exerts Anti-SARS-CoV-2 Activity In Vitro and in Golden Syrian Hamsters In Vivo. Pharmaceuticals (Basel, Switzerland), 15(9), 1053. https://doi.org/10.3390/ph15091053

van der Zande, H. J. P., Nitsche, D., Schlautmann, L., Guigas, B., & Burgdorf, S. (2021). The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Frontiers in immunology, 12, 765034. https://doi.org/10.3389/fimmu.2021.765034

Vanderbeke, L., Van Mol, P., Van Herck, Y., De Smet, F., Humblet-Baron, S., Martinod, K., Antoranz, A., Arijs, I., Boeckx, B., Bosisio, F. M., Casaer, M., Dauwe, D., De Wever, W., Dooms, C., Dreesen, E., Emmaneel, A., Filtjens, J., Gouwy, M., Gunst, J., Hermans, G., … Wauters, J. (2021). Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature communications, 12(1), 4117. https://doi.org/10.1038/s41467-021-24360-w

Zawada, A. M., Rogacev, K. S., Rotter, B., Winter, P., Marell, R. R., Fliser, D., & Heine, G. H. (2011). SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood, 118(12), e50–e61. https://doi.org/10.1182/blood-2011-01-326827

Zhang, H., Tang, Y., & Tao, J. (2021). Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Frontiers in molecular biosciences, 8, 671363. https://doi.org/10.3389/fmolb.2021.671363

Downloads

Published

2025-10-14